Discussion
We have prospectively documented the potential eligibility of patients with type 2 MI or nonischaemic myocardial injury for repurposing three candidate medicines in the theoretical context of a randomised, controlled trial. The data are contemporary, prospectively evaluated and relatively unselected. Our results should help to derisk the design and implementation of a future clinical trial in type 2 MI or nonischaemic myocardial injury involving one of these medicines.
We considered the potential eligibility of the patients for these candidate therapies in relation to the acute care pathway, first following hospital admission and second at discharge. We found that 111 (52.9%) patients admitted with type 2 MI or nonischaemic myocardial injury might be eligible without absolute contraindications for a trial of early (in-hospital) initiation of colchicine, 57 (27.1%) would be eligible for secondary prevention trials with eplerenone and 172 (81.9%) with ticagrelor. Considering patients surviving through to discharge, 88 (50.6%), 140 (80.5%) and 46 (26.4%) were eligible for colchicine, eplerenone and ticagrelor therapy, respectively. Age >65 years was a relative caution for the prescription of colchicine and eplerenone.
Repurposing an established therapy is, theoretically, an attractive proposition since the safety of the medicine is generally well understood, derisking the trial. Considering efficacy, supporting information on the efficacy of repurposing candidates may already exist in a related disease area. Patients with type 2 MI or nonischaemic myocardial injury have distinct characteristics, including older age and prevalent comorbidity. Furthermore, enrolling patients into a drug trial during acute care raises presents particular challenges to trial recruitment, including the feasibility of obtaining written informed consent, meeting enrolment milestones and, of course, the type of clinical endpoints to assess the safety and efficacy of the repurposed medicine. A White Paper review of type 2 MI by DeFilippis et al16 identifies a paucity of clinical evidence from randomised, controlled, secondary prevention. In our study, we attempted to enhance the relevance of the results for colchicine by drawing on relevant criteria from the COLCOT trial, which reflects contemporary prescribing, although in patients with type 1 MI.
Colchicine
Colchicine is an anti-inflammatory drug extracted from Colchicum autumnale (autumn crocus). Colchicine is guideline indicated in the management of myopericarditis and, recently, has been shown to be an effective treatment in reducing composite cardiovascular end points including stroke and readmission with angina in patients’ postacute MI and in stable coronary artery disease.3–5 17 Colchicine is a tricyclic, lipid-soluble alkaloid reaching peak plasma volume 60 min after oral administration with long half-life duration. Increased concentrations within neutrophils are in keeping with its potent anti-inflammatory properties.18 While colchicine has been used therapeutically for thousands of years, it was not approved by the FDA until 2009. Colchicine is now indicated therapy for pericarditis and gout, and it may lower the incidence of post-operative or post-ablation atrial fibrillation.6 7 19 20 In patients with either acute MI or stable coronary disease colchicine reduces the need for repeat revascularisation, which may be explained by its antiatherosclerotic effects4 5 21–23 Colchicine has been investigated in large randomised controlled trials in patients with COVID-19. Preprint data from the COLCORONA trial described a reduction in the composite of hospitalisation and mortality among nonhospitalised patients with COVID-19 when treated with colchicine versus placebo (4.6% vs 6.0%; OR, 0.75; 95% CI 0.57 to 0.99; p=0.04).24 In hospitalised patients with COVID-19, the RECOVERY investigators found no effect of colchicine on 28-day mortality (20% colchicine vs 19% usual care alone; risk ratio 1.02 (95% CI 0.94–1.11); p=0.63).25 However, it is unclear whether colchicine might be beneficial in patients with myocardial injury or type 2 MI and COVID-19 disease as data in this subgroup are lacking.
The most common side effect of oral colchicine administration is gastrointestinal upset, occurring in up to 20% of patients and 20% of reasons for discontinuation. Less common (combined <5%) potential side effects include myalgia, rash, alopecia or hepatotoxicity. Pre-existing liver disease or poor creatinine clearance increase the likelihood of side effects. In the Australian COPS Trial and LoDoCo2 Trials, colchicine was associated with an increase in noncardiovascular deaths.5 17 Colchicine has immunosuppressive effects and in the COLCOT trial, pneumonia was more common in colchicine-treated patients (p=0.03).4 26 A systematic review and meta-analysis of 35 randomised control trials have not borne out an increased risk of infection with colchicine.27
Eplerenone
Aldosterone plays an important role in the pathophysiological mechanisms of heart failure and mediates the deleterious downstream effects of renin-angiotensin-aldosterone system activation, including endothelial dysfunction, cardiovascular inflammation, myocardial fibrosis, ventricular remodelling and increased arrhythmogenicity. Plasma concentrations early post-MI are independently associated with increased all-cause mortality.28 ,29 MRA (nonselective: spironolactone; selective: eplerenone) reduce both the risk of death and hospitalisation in selected patients following acute MI with LVEF ≤40% and clinically evident heart failure.9 29 30 REMINDER was a randomised, placebo-controlled, double-blind trial of eplerenone in patients presenting with acute MI without heart failure.31 After 10.5 months, the primary endpoint occurred in 92 (18.2%) and 149 patients (29.4%) in the eplerenone and placebo groups, respectively (HR 0.58; 95% CI 0.45 to 0.76; p<0.01). This result was driven by a treatment-related reduction in NTproBNP. In the HOMAGE trial, patients with risk factors for heart failure (mean age 73 years, 26% women, 71% prior MI), including an increased NT-proBNP and no prior history of heart failure, were randomised to receive spironolactone or standard care.32 In addition to a treatment-related reduction in NT-proBNP (mean difference −57; 95% CI −81 to −33 ng/L; p < 0.0001) spironolactone also reduced type 1 collagen degradation reflected by a reduction in carboxy terminal propeptide of type 1 procollagen (mean difference −8.1; 95% CI −11.9 to −4.3 µg/L; p < 0.0001) (primary endpoint). Considering mechanisms, this antifibrotic effect may reduce left ventricular stiffness, which would lead to a favourable reduction in NT-proBNP. Potentially, MRA therapy may be beneficial to which would lead to a favourable reduction in NT-proBNP. Potentially, MRA therapy may be beneficial to patients with type 2 MI and this possibility merits prospective evaluation.
Spironolactone has antiandrogenic side effects such as gynecomastia or impotence. The development of selective nonsteroidal MRAs such as eplerenone, and MR modulators such as finerenone, which reduce the likelihood of hyperkalaemia, have a more favourable side effect profile.30
Ticagrelor
A reversible cyclopentyl triazolopyrimidine, orally active, selective adenosine diphosphate (P2Y12) receptor antagonist—ticagrelor is indicated for patients with acute coronary syndromes.33 The platelet inhibition and patient outcome trial found that ticagrelor reduced composite MI, stroke or death compared with clopidogrel in patients who were both medically managed or who underwent revascularisation.34 However, ticagrelor increased major bleeding compared with placebo and aspirin.35 Patients with type 2 MI or myocardial injury may have an increased risk of 30-day major adverse cardiovascular events compared with type 1 MI (20% vs 9%), highlighting competing risks and benefits.
Additional therapies
We have selected novel therapies based on their established efficacy and safety in other forms of cardiovascular disease. There are limited data available on other candidate therapies in type 2 MI, including beta blockers, statins and angiotensin-converting enzyme receptor inhibitors/angiotensin receptor blockers and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors.36 37 Favourable effects of alirocumab, when added to intensive statin therapy, were reported in a prespecified analysis from the ODYSSEY OUTCOMES trial (effects of alirocumab on types of MI).38 The novel findings were a reduction in the incidence of recurrent MI, either type 1 or type 2, in patients with elevated low-density lipoprotein cholesterol after an index acute coronary syndrome. Alirocumab was well tolerated with a favourable side-effect profile. The findings in prior studies, and our own, support the rationale for randomised, controlled, clinical trials.
Limitations
While patients have been designated as potentially eligible within the index admission, the diagnosis of type 2 MI or myocardial injury may not be suspected or confirmed based on the initial troponin I measurement. In our population, 20.5% had changes in diagnosis arising between the initial aetiology of hsTnI elevation and the final diagnosis of type 2 MI, including 32 (15.2%) initially coded as type 1 MI. The relatively small number of patients with type 2 MI or myocardial injury identified within the study period is a limitation.
COVID-19 was a primary or secondary diagnosis in 35 (16.7%) of the initially eligible patients and a significant primary cause of in-hospital mortality for 22 patients (10.4%). COVID-19 and its sequalae are likely to be a relevant public health problem for the foreseeable future.39 COVID-19 is associated with myocardial injury and type 2 MI in unscheduled care.40