Discussion
Despite the use of contemporary cardiopulmonary therapies, all patients observed more than 5 years experienced a progressive decline in heart function which progressed to LVD in most. However, both the rate of decline in cardiac function and the age at onset of LVD were variable. Once LVD advanced to CHF, survival was brief, with death usually occurring within 1 year. A cardiac phenotype was identified in that patients with onset of LVD at age <18 years died at a younger age than those with onset of LVD at ≥18 years, suggesting that early onset of LVD may be a good marker for patients with a more severe cardiac phenotype.
These results imply that contemporary therapies did not significantly alter the relentless progression of heart dysfunction; that is, therapies did not achieve significant reverse remodelling of DMD cardiomyopathy. If our results are replicated, then the inability of contemporary treatments to alter the long-term progression of DMD cardiomyopathy is distinct and contrasts with that seen in idiopathic cardiomyopathy, where therapy can alter the progression of LV dysfunction and reverse remodelling is common.13 14 It is not surprising that the DMD cardiomyopathy is progressive since ongoing myocyte death is consequent to the genetic abnormality. As LV dilatation ensues, the increased wall stress aggravates the progression of LVD.
Short-term outcome data
Short-term studies in predominantly younger patients have reported that medications improve LV function in DMD cardiomyopathy.15–17 However short-term observations could be confounded by random variations in LV ejection fraction or by the chance assignment of patients with a favourable cardiac phenotype to the active therapy group. In contrast, our findings of progressive LVD are supported by a recent study using the more sensitive diagnostic modality of CMR, which showed a decline in LV function and LV myocardial strain in a young cohort despite ongoing therapy.18 The view that ACEI/ARB therapy has limited efficacy over time is also supported by a recent analysis of these therapies in adults with LV systolic dysfunction of diverse aetiologies.19
Other outcome data
Long-term longitudinal outcome data for the DMD cardiomyopathy are sparse. Several studies suggest that our results may be representative of DMD populations in general. An echocardiographic study found the mean age at onset of cardiomyopathy was 16.5 years (range 3.6–36.5 years), comparable with our finding of LVD onset at a median age of 18 years.20 A 1-year echocardiographic study in patients undergoing surgery for scoliosis showed the SF percentage decreased by approximately 1% per year,21 like our cohort in whom SF declined at a mean rate of 1.51±1.16% per year. The multicentre Pediatric Cardiomyopathy Registry report included 128 patients with DMD from 57 centres. These retrospective observations were prior to 1995; only a small minority received an ACEI or ARB, none received a beta-blocker and it is unclear what proportion received home respiratory support. Death occurred in 50% of patients within 5.5 years of the diagnosis of cardiomyopathy,22 comparable with our actively treated cohort with a median survival of 6.8 years after onset of LVD. A recent CMR study showed steady progression of LVD and myocardial fibrosis over several years, with the LV ejection fraction declining at a rate of 0.58%±0.10% per year, more rapidly if late gadolinium enhancement was evident.23 Their young cohort had few outcome events. Cardiac function was assessed in a young cohort using CMR; LV ejection fractions tended to decrease and LV global circumferential strain showed a significant decline despite 1 year of ACEI/ARB treatment.18 These data support our finding that once LVD is evident, there is usually steady progression of cardiac dysfunction, suggesting current therapies do not substantially alter the natural history of DMD cardiomyopathy.
CHF and death
The extremely short survival of patients who developed CHF is a new and important observation; CHF is a sentinel event with dire prognostic implications. This observation contrasts with that of idiopathic dilated cardiomyopathy where treatment often reverses CHF symptoms and a sustained clinical improvement follows.13 We suggest that a therapy for DMD cardiomyopathy can only be considered effective if it prevents or delays onset of CHF. Onset of CHF could be used both as an outcome measure and as a negative prognostic marker. Our finding implies that patients with CHF are not good candidates for implanted intracardiac defibrillators since current guidelines include a ‘reasonable expectation of meaningful survival for more than 1 year’.24
Genotype–phenotype correlations, cardiac natural history and cardiac phenotypes
Our modest sample size precludes a definitive answer as to whether differences exist in outcomes between different dystrophin genotypes.25 However, our observation that patients with identical exon deletions have highly variable ages at onset of LVD implies that the clinical course is not predicted by the genotype. Additionally, classifying cardiac phenotypes by age at onset of LVD could have important prognostic implications: patients with onset of LVD at <18 years had a severe phenotype and experienced an earlier death. However, there was no clear association between a patient’s dystrophin genotype and the presence of either the severe or mild cardiac phenotype, suggesting a patient’s dystrophin genotype cannot be used to predict the trajectory of his cardiac function over time. This observation has important implications for the evaluation of current and future therapies; that is, efficacy of cardiac therapies should be evaluated in the context of each individual patient’s cardiac phenotype. For example, good heart function over time might be mistakenly attributed to a therapy when the cause is attributable to a favourable cardiac phenotype. Regarding the aetiology of cardiac phenotypic variability, it is likely that cardiac function is related not just to a patient’s dystrophin mutation, but to his entire genetic milieu, including the presence of detrimental or beneficial cardiac modifier genes.20
Study strengths and limitations
A single-institution observational study provides consistency in analysis of echocardiographic data, a standardised approach to therapies and a high level of detail regarding each patient’s clinical course. However, our retrospective cohort design means that we cannot determine causal relationships. The small size of our cohort means that our observations require confirmation to assure that they are generalisable.
The advantages and limitations of echocardiography as our primary imaging modality deserve discussion, since CMR has become the preferred diagnostic modality.23 25 Echocardiographic measures of cardiac function were chosen because CMR with late gadolinium enhancement for detection of fibrosis was not commonly available at the time of their presentation, and many older patients would have been unsuitable (ie, spinal rods and/or intolerance of the physical demands of CMR). Assessment of SF by echocardiography was shown to correlate with LV ejection fraction by CMR in cohorts of young patients with muscular dystrophy.12 26 Since CMR is a more sensitive diagnostic modality, it is probable that a greater proportion of our patients would have been identified as manifesting cardiac dysfunction and at an earlier age had we used CMR as our imaging modality.23 27 28 Overall, our observations regarding progression of LV dysfunction and patient outcomes are valid and independent of the imaging modality. Importantly, echocardiography remains the most widely used imaging modality for patients with DMD.
The retrospective design of our study meant we could not always ascertain the age at onset of LVD. Additionally, patients <16 years of age were evaluated by paediatric cardiologists from another institution and digital storage of the echocardiographic images was not performed. This precluded an analysis of serial LV function. Variations in medication dosage might confound the natural history of LVD, but our dosing regimens were similar for the patients with LVD. Additionally, the ATLAS trial of low-dose versus high-dose lisinopril did not find a marked difference in patient outcomes.29