Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diuretic response in acute heart failure—pathophysiology, evaluation, and therapy

Key Points

  • The administration of loop diuretics to achieve decongestion is the cornerstone of therapy for acute heart failure

  • Impaired diuretic response is a common complication in patients with acute heart failure and is associated with increased rehospitalization and mortality compared with patients who have normal diuretic response

  • Impaired absorption, decreased renal blood flow, azotaemia, hypoalbuminaemia, and proteinuria result in reduced levels of active diuretics in the tubular lumen, and diminish diuretic effectiveness

  • Several treatment strategies, including increased dose of intravenous loop diuretics, combination therapy, and ultrafiltration, aim to improve biological availability of the drugs and counteract maladaptive responses in diuretic-resistant patients

  • Quantitative measures of diuretic response have been proposed, but need to be validated in larger populations of patients with acute heart failure

  • An enhanced understanding of diuretic response should ultimately lead to improved individualized approaches to treating patients with acute heart failure

Abstract

The administration of loop diuretics to achieve decongestion is the cornerstone of therapy for acute heart failure. Unfortunately, impaired response to diuretics is common in these patients and associated with adverse outcomes. Diuretic resistance is thought to result from a complex interplay between cardiac and renal dysfunction, and specific renal adaptation and escape mechanisms, such as neurohormonal activation and the braking phenomenon. However, our understanding of diuretic response in patients with acute heart failure is still limited and a uniform definition is lacking. Three objective methods to evaluate diuretic response have been introduced, which all suggest that diuretic response should be determined based on the effect of diuretic dose administered. Several strategies have been proposed to overcome diuretic resistance, including combination therapy and ultrafiltration, but prospective studies in patients who are truly unresponsive to diuretics are lacking. An enhanced understanding of diuretic response should ultimately lead to an improved, individualized approach to treating patients with acute heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diuretic therapy.
Figure 2: Mechanisms of loop diuretic resistance.
Figure 3: An approach to treating patients with acute heart failure who are diuretic resistant.

Similar content being viewed by others

References

  1. McMurray, J. J. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    Article  PubMed  Google Scholar 

  2. Adams, K. F. Jr. et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100, 000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 149, 209–216 (2005).

    PubMed  Google Scholar 

  3. Sato, N. et al. Acute decompensated heart failure syndromes (ATTEND) registry. A prospective observational multicenter cohort study: rationale, design, and preliminary data. Am. Heart J. 159, 949.e1–955.e1 (2010).

    Article  Google Scholar 

  4. Ellison, D. H. Diuretic therapy and resistance in congestive heart failure. Cardiology 96, 132–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Valente, M. A. et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur. Heart J. 35, 1284–1293 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Testani, J. M. et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ. Heart Fail. 7, 261–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Braunwald, E. Responsiveness to loop diuretics in heart failure. Eur. Heart J. 35, 1235–1237 (2014).

    Article  PubMed  Google Scholar 

  8. Cadnapaphornchai, M. A., Gurevich, A. K., Weinberger, H. D. & Schrier, R. W. Pathophysiology of sodium and water retention in heart failure. Cardiology 96, 122–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Levin, E. R., Gardner, D. G. & Samson, W. K. Natriuretic peptides. N. Engl. J. Med. 339, 321–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Harris, P. J., Thomas, D. & Morgan, T. O. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature 326, 697–698 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Guyton, A. & Hall, J. in Medical Physiology (Elsevier Saunders, 2006).

    Google Scholar 

  12. Schrier, R. W. & Abraham, W. T. Hormones and hemodynamics in heart failure. N. Engl. J. Med. 341, 577–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Baylis, P. H. Osmoregulation and control of vasopressin secretion in healthy humans. Am. J. Physiol. 253, R671–R678 (1987).

    CAS  PubMed  Google Scholar 

  14. Unger, T. & Li, J. The role of the renin-angiotensin-aldosterone system in heart failure. J. Renin Angiotensin Aldosterone Syst. 5 (Suppl. 1), S7–S10 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Weber, K. T. Aldosterone in congestive heart failure. N. Engl. J. Med. 345, 1689–1697 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Schrier, R. W. Aldosterone 'escape' vs 'breakthrough'. Nat. Rev. Nephrol. 6, 61 (2010).

    Article  PubMed  Google Scholar 

  17. Levine, T. B., Francis, G. S., Goldsmith, S. R., Simon, A. B. & Cohn, J. N. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am. J. Cardiol. 49, 1659–1666 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Schrier, R. W., Berl, T. & Anderson, R. J. Osmotic and nonosmotic control of vasopressin release. Am. J. Physiol. 236, F321–F332 (1979).

    CAS  PubMed  Google Scholar 

  19. Charloux, A., Piquard, F., Doutreleau, S., Brandenberger, G. & Geny, B. Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur. J. Clin. Invest. 33, 769–778 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Liang, F. et al. Evidence for functional heterogeneity of circulating B-type natriuretic peptide. J. Am. Coll. Cardiol. 49, 1071–1078 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Vallon, V., Miracle, C. & Thomson, S. Adenosine and kidney function: potential implications in patients with heart failure. Eur. J. Heart Fail. 10, 176–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Damman, K., Voors, A. A., Navis, G., van Veldhuisen, D. J. & Hillege, H. L. The cardiorenal syndrome in heart failure. Prog. Cardiovasc. Dis. 54, 144–153 (2011).

    Article  PubMed  Google Scholar 

  23. Smilde, T. D. et al. Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin. Res. Cardiol. 98, 121–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Hillege, H. L. et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 102, 203–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Damman, K. et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur. J. Heart Fail. 9, 872–878 (2007).

    Article  PubMed  Google Scholar 

  26. Damman, K. et al. Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur. J. Heart Fail. 12, 974–982 (2010).

    Article  PubMed  Google Scholar 

  27. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ellison, D. H. The physiologic basis of diuretic synergism: its role in treating diuretic resistance. Ann. Intern. Med. 114, 886–894 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Maren, T. H. Use of inhibitors in physiological studies of carbonic anhydrase. Am. J. Physiol. 232, F291–F297 (1977).

    CAS  PubMed  Google Scholar 

  30. Warren, S. E. & Blantz, R. C. Mannitol. Arch. Intern. Med. 141, 493–497 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Steinmuller, S. T. & Puschett, J. B. Effects of metolazone in man: comparison with chlorothiazide. Kidney Int. 1, 169–181 (1972).

    Article  CAS  PubMed  Google Scholar 

  32. Vargo, D. L. et al. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin. Pharmacol. Ther. 57, 601–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Brater, D. C., Day, B., Burdette, A. & Anderson, S. Bumetanide and furosemide in heart failure. Kidney Int. 26, 183–189 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Uwai, Y., Saito, H., Hashimoto, Y. & Inui, K. I. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J. Pharmacol. Exp. Ther. 295, 261–265 (2000).

    CAS  PubMed  Google Scholar 

  35. Kim, E. J. & Lee, M. G. Pharmacokinetics and pharmacodynamics of intravenous bumetanide in mutant Nagase analbuminemic rats: importance of globulin binding for the pharmacodynamic effects. Biopharm. Drug Dispos. 22, 147–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Jackson, C. E. et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet 374, 543–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hesse, B., Parving, H. H., Lund-Jacobsen, H. & Noer, I. Transcapillary escape rate of albumin and right atrial pressure in chronic congestive heart failure before and after treatment. Circ. Res. 39, 358–362 (1976).

    Article  CAS  PubMed  Google Scholar 

  38. Bowman, R. H. Renal secretion of [35-S]furosemide and depression by albumin binding. Am. J. Physiol. 229, 93–98 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Pichette, V., Geadah, D. & du Souich, P. The influence of moderate hypoalbuminaemia on the renal metabolism and dynamics of furosemide in the rabbit. Br. J. Pharmacol. 119, 885–890 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gentilini, P. et al. Albumin improves the response to diuretics in patients with cirrhosis and ascites: results of a randomized, controlled trial. J. Hepatol. 30, 639–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Ghafari, A. et al. Co-administration of albumin-furosemide in patients with the nephrotic syndrome. Saudi J. Kidney Dis. Transpl. 22, 471–475 (2011).

    PubMed  Google Scholar 

  42. Phakdeekitcharoen, B. & Boonyawat, K. The added-up albumin enhances the diuretic effect of furosemide in patients with hypoalbuminemic chronic kidney disease: a randomized controlled study. BMC Nephrol. 13, 92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sweet, D. H., Bush, K. T. & Nigam, S. K. The organic anion transporter family: from physiology to ontogeny and the clinic. Am. J. Physiol. Renal Physiol. 281, F197–F205 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Krick, W., Wolff, N. A. & Burckhardt, G. Voltage-driven p-aminohippurate, chloride, and urate transport in porcine renal brush-border membrane vesicles. Pflugers Arch. 441, 125–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Kazory, A. Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. Am. J. Cardiol. 106, 694–700 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Schrier, R. W. Blood urea nitrogen and serum creatinine: not married in heart failure. Circ. Heart Fail. 1, 2–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Wilcox, C. S. et al. Response of the kidney to furosemide. I. Effects of salt intake and renal compensation. J. Lab. Clin. Med. 102, 450–458 (1983).

    CAS  PubMed  Google Scholar 

  48. Loon, N. R., Wilcox, C. S. & Unwin, R. J. Mechanism of impaired natriuretic response to furosemide during prolonged therapy. Kidney Int. 36, 682–689 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Brater, D. C. Diuretic therapy. N. Engl. J. Med. 339, 387–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Kaissling, B., Bachmann, S. & Kriz, W. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am. J. Physiol. 248, F374–F381 (1985).

    CAS  PubMed  Google Scholar 

  51. Voors, A. A. et al. Diuretic response in patients with acute decompensated heart failure: characteristics and clinical outcome-an analysis from RELAX-AHF. Eur. J. Heart Fail. 16, 1230–1240 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Singh, D. et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J. Card. Fail. 20, 392–399 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vaduganathan, M. et al. Hemoconcentration-Guided Diuresis in Heart Failure. Am. J. Med. 127, 1154–1159 (2014).

    Article  PubMed  Google Scholar 

  54. Verbrugge, F. H. et al. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ. Heart Fail. 7, 766–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Johnston, G. D. et al. Factors modifying the early nondiuretic vascular effects of furosemide in man. The possible role of renal prostaglandins. Circ. Res. 53, 630–635 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. Cosin, J., Diez, J. & TORIC investigators. Torasemide in chronic heart failure: results of the TORIC study. Eur. J. Heart Fail. 4, 507–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Bikdeli, B. et al. Dominance of furosemide for loop diuretic therapy in heart failure: time to revisit the alternatives? J. Am. Coll. Cardiol. 61, 1549–1550 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dormans, T. P. et al. Diuretic efficacy of high dose furosemide in severe heart failure: bolus injection versus continuous infusion. J. Am. Coll. Cardiol. 28, 376–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Thomson, M. R. et al. Continuous versus intermittent infusion of furosemide in acute decompensated heart failure. J. Card. Fail. 16, 188–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. van Meyel, J. J. et al. Continuous infusion of furosemide in the treatment of patients with congestive heart failure and diuretic resistance. J. Intern. Med. 235, 329–334 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Felker, G. M. et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 364, 797–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kunau, R. T. Jr, Weller, D. R. & Webb, H. L. Clarification of the site of action of chlorothiazide in the rat nephron. J. Clin. Invest. 56, 401–407 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Channer, K. S., McLean, K. A., Lawson-Matthew, P. & Richardson, M. Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br. Heart J. 71, 146–150 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ng, T. M. et al. Comparison of bumetanide- and metolazone-based diuretic regimens to furosemide in acute heart failure. J. Cardiovasc. Pharmacol. Ther. 18, 345–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Tilstone, W. J., Dargie, H., Dargie, E. N., Morgan, H. G. & Kennedy, A. C. Pharmacokinetics of metolazone in normal subjects and in patients with cardiac or renal failure. Clin. Pharmacol. Ther. 16, 322–329 (1974).

    Article  CAS  PubMed  Google Scholar 

  66. Brater, D. C., Kaojarern, S. & Chennavasin, P. Pharmacodynamics of the diuretic effects of aminophylline and acetazolamide alone and combined with furosemide in normal subjects. J. Pharmacol. Exp. Ther. 227, 92–97 (1983).

    CAS  PubMed  Google Scholar 

  67. Khan, M. I. Treatment of refractory congestive heart failure and normokalemic hypochloremic alkalosis with acetazolamide and spironolactone. Can. Med. Assoc. J. 123, 883–887 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kassamali, R. & Sica, D. A. Acetazolamide: a forgotten diuretic agent. Cardiol. Rev. 19, 276–278 (2011).

    Article  PubMed  Google Scholar 

  69. Turagam, M. K. et al. Outcomes of furosemide-mannitol infusion in hospitalized patients with heart failure: an observational single-center cohort study of 122 patients. Int. J. Cardiol. 151, 232–234 (2011).

    Article  PubMed  Google Scholar 

  70. US National Library of Medicine. Clinicaltrials.gov [online], (2014).

  71. US National Library of Medicine. Clinicaltrials.gov [online], (2014).

  72. Hensen, J., Abraham, W. T., Durr, J. A. & Schrier, R. W. Aldosterone in congestive heart failure: analysis of determinants and role in sodium retention. Am. J. Nephrol. 11, 441–446 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. The RALES Investigators. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am. J. Cardiol. 78, 902–907 (1996).

  76. van Vliet, A. A., Donker, A. J., Nauta, J. J. & Verheugt, F. W. Spironolactone in congestive heart failure refractory to high-dose loop diuretic and low-dose angiotensin-converting enzyme inhibitor. Am. J. Cardiol. 71, 21A–28A (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Ferreira, J. P. et al. Mineralocorticoid receptor antagonism in acutely decompensated chronic heart failure. Eur. J. Intern. Med. 25, 67–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Kolkhof, P. et al. Finerenone, a novel selective non-steroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J. Cardiovasc. Pharmacol. 64, 69–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Pitt, B. et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur. Heart J. 34, 2453–2463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sigurd, B., Olesen, K. H. & Wennevold, A. The supra-additive natriuretic effect addition of bendroflumethiazide and bumetanide in congestive heart failure. Permutation trial tests in patients in long-term treatment with bumetanide. Am. Heart J. 89, 163–170 (1975).

    Article  CAS  PubMed  Google Scholar 

  81. Olesen, K. H. & Sigurd, B. The supra-additive natriuretic effect addition of quinethazone or bendroflumethiazide during long-term treatment with furosemide and spironolactone. Permutation trial tests in patients with congestive heart failure. Acta Med. Scand. 190, 233–240 (1971).

    Article  CAS  PubMed  Google Scholar 

  82. Schnaper, H. W. et al. Potassium restoration in hypertensive patients made hypokalemic by hydrochlorothiazide. Arch. Intern. Med. 149, 2677–2681 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Schrier, R. W. et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N. Engl. J. Med. 355, 2099–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Elkayam, U., Ng, T. M., Hatamizadeh, P., Janmohamed, M. & Mehra, A. Renal Vasodilatory Action of Dopamine in Patients With Heart Failure: Magnitude of Effect and Site of Action. Circulation 117, 200–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, H. H. et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA 310, 2533–2543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Triposkiadis, F. K. et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion: the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int. J. Cardiol. 172, 115–121 (2014).

    Article  PubMed  Google Scholar 

  87. Giamouzis, G. et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J. Card. Fail. 16, 922–930 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Paterna, S. et al. Changes in brain natriuretic peptide levels and bioelectrical impedance measurements after treatment with high-dose furosemide and hypertonic saline solution versus high-dose furosemide alone in refractory congestive heart failure: a double-blind study. J. Am. Coll. Cardiol. 45, 1997–2003 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Licata, G. et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am. Heart J. 145, 459–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Paterna, S. et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as a bolus, in refractory congestive heart failure. Eur. J. Heart Fail. 2, 305–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Paterna, S. et al. Short-term effects of hypertonic saline solution in acute heart failure and long-term effects of a moderate sodium restriction in patients with compensated heart failure with New York Heart Association class III (class C) (SMAC-HF study). Am. J. Med. Sci. 342, 27–37 (2011).

    Article  PubMed  Google Scholar 

  92. Ronco, C., Ricci, Z., Bellomo, R. & Bedogni, F. Extracorporeal ultrafiltration for the treatment of overhydration and congestive heart failure. Cardiology 96, 155–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Bart, B. A. et al. Ultrafiltration versus usual care for hospitalized patients with heart failure: the Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure (RAPID-CHF) trial. J. Am. Coll. Cardiol. 46, 2043–2046 (2005).

    Article  PubMed  Google Scholar 

  94. Costanzo, M. R. et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 49, 675–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Bart, B. A. et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N. Engl. J. Med. 367, 2296–2304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. US National Library of Medicine. Clinicaltrials.gov [online], (2014).

  97. US National Library of Medicine. Clinicaltrials.gov [online], (2012).

  98. US National Library of Medicine. Clinicaltrials.gov [online], (2013).

  99. Udelson, J. E. et al. Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J. Am. Coll. Cardiol. 52, 1540–1545 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Hunt, S. A. et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119, e391–e479 (2009).

    PubMed  Google Scholar 

  101. Gottlieb, S. S. et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (acute study of clinical effectiveness of nesiritide and decompensated heart failure). J. Am. Coll. Cardiol. 62, 1177–1183 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Valentin, J. P., Sechi, L. A., Qui, C., Schambelan, M. & Humphreys, M. H. Urodilatin binds to and activates renal receptors for atrial natriuretic peptide. Hypertension 21, 432–438 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. US National Library of Medicine. Clinicaltrials.gov [online], (2014).

  104. Packer, M. et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail. 1, 103–111 (2013).

    Article  PubMed  Google Scholar 

  105. Liu, C. et al. Potent diuretic effects of prednisone in heart failure patients with refractory diuretic resistance. Can. J. Cardiol. 23, 865–868 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Metra, M. et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J. Am. Coll. Cardiol. 61, 196–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Neuberg, G. W. et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am. Heart J. 144, 31–38 (2002).

    Article  PubMed  Google Scholar 

  108. Knauf, H. & Mutschler, E. Sequential nephron blockade breaks resistance to diuretics in edematous states. J. Cardiovasc. Pharmacol. 29, 367–372 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Epstein, M., Lepp, B., Hoffman, S. & Levinson, R. Potentation of furosemide by metolazone in refractory edema. Curr. Therap. Res. 21, 656–667 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.M.t.M. and M.A.E.V. researched data for the article and wrote the manuscript. All authors made substantial contribution to discussion of the content, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Adriaan A. Voors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ter Maaten, J., Valente, M., Damman, K. et al. Diuretic response in acute heart failure—pathophysiology, evaluation, and therapy. Nat Rev Cardiol 12, 184–192 (2015). https://doi.org/10.1038/nrcardio.2014.215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing