Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches

Abstract

Anemia and iron deficiency are common in patients with heart failure (HF), and are associated with worse symptoms and adverse outcomes in this population. Although the two can occur together, anemia in HF is often not caused by iron deficiency, and iron deficiency can be present without causing anemia. Erythropoiesis-stimulating agents have been investigated extensively in the past few years and might be of benefit in patients with HF and anemia. However, concerns have arisen regarding the safety of erythropoiesis-stimulating agents in patients with chronic kidney disease and so the results of a large mortality trial are eagerly awaited to provide information on safety in patients with HF. Iron supplementation or replacement is a much older treatment option for patients with HF and anemia, but questions about the safety of intravenous iron, and absorption problems with oral formulations have prevented its widespread use to date. In the past few years, however, new data on the importance of iron deficiency in HF have become available, and a number of studies with intravenous iron have shown promising results. Therefore, this treatment approach is likely to become an attractive option for patients with HF and iron deficiency, both with and without anemia.

Key Points

  • Anemia and iron deficiency are both common and important in the setting of heart failure

  • Anemia is associated with increased morbidity and mortality among patients with heart failure

  • Iron deficiency, both with and without anemia, is also associated with adverse clinical outcomes

  • Treatment of patients with heart failure and anemia with erythropoiesis-stimulating agents could have beneficial clinical effects, but the results of a large-scale ongoing trial (RED-HF) must be awaited

  • Intravenous, but not oral, iron supplementation might be beneficial in the treatment of patients with heart failure and iron deficiency

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association between hemoglobin response to treatment with erythropoiesis-stimulating agents and outcome in patients with HF.
Figure 2: Role of iron deficiency in the pathogenesis of exercise intolerance.
Figure 3: Influence of iron deficiency on outcome in patients with heart failure.
Figure 4: Effect of intravenous iron (ferric carboxymaltose) in patients with heart failure and iron deficiency in various subgroups (including those with and without anemia).
Figure 5: Clinical events in the Ferinject® Assessment in Patients With IRon Deficiency and Chronic Heart Failure (FAIR-HF).

Similar content being viewed by others

References

  1. Anand, I. S. Anemia and chronic heart failure implications and treatment options. J. Am. Coll. Cardiol. 52, 501–511 (2008).

    PubMed  Google Scholar 

  2. Groenveld, H. et al. Anemia and mortality in heart failure patients: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 52, 818–827 (2008).

    PubMed  Google Scholar 

  3. Tang, Y. D. & Katz, S. D. Anemia in chronic heart failure: prevalence, etiology, clinical correlates, and treatment options. Circulation 113, 2454–2461 (2006).

    PubMed  Google Scholar 

  4. Go, A. S. et al. Hemoglobin level, chronic kidney disease, and the risk of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure Outcomes and Resource Utilization (ANCHOR) Study. Circulation 113, 2713–2723 (2006).

    CAS  PubMed  Google Scholar 

  5. Ezekowitz, J. A., McAlister, F. A. & Armstrong, P. W. Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12,065 patients with new-onset heart failure. Circulation 107, 986–994 (2003).

    Google Scholar 

  6. Vrtovec, B. et al. Significance of anemia in patients with advanced heart failure receiving long-term mechanical circulatory support. Eur. J. Heart Fail. 11, 1000–1004 (2009).

    PubMed  Google Scholar 

  7. Schroten, N. F. et al. High cumulative incidence of cancer in patients with cardio-renal-anaemia syndrome. Eur. J. Heart Fail. 12, 855–860 (2010).

    CAS  PubMed  Google Scholar 

  8. Kalra, P. R. et al. Effect of anemia on exercise tolerance in chronic heart failure in men. Am. J. Cardiol. 91, 888–891 (2003).

    PubMed  Google Scholar 

  9. O'Meara, E. et al. Clinical correlates and consequences of anemia in a broad spectrum of patients with heart failure: results of the Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM) Program. Circulation 21, 986–994 (2006).

    Google Scholar 

  10. Hogenhuis, J. et al. Anaemia and renal dysfunction are independently associated with BNP and NT-proBNP levels in patients with heart failure. Eur. J. Heart Fail. 9, 787–794 (2007).

    CAS  PubMed  Google Scholar 

  11. Sharma, R. et al. Haemoglobin predicts survival in patients with chronic heart failure: a substudy of the ELITE Trial. Eur. Heart J. 25, 1021–1028 (2004).

    CAS  PubMed  Google Scholar 

  12. Mozaffarian, D., Nye, R. & levy, W. C. Anemia predicts mortality in severe heart failure. The Prospective Randomized Amlodipine survival Evaluation. J. Am. Coll. Cardiol. 41, 1933–1939 (2003).

    PubMed  Google Scholar 

  13. Okonko, D. O. & Anker, S. D. Anemia in chronic heart failure: pathogenetic mechanisms. J. Card. Fail. 10, S5–S9 (2004).

    CAS  PubMed  Google Scholar 

  14. McClellan, W. M., Flanders, W. D., Langston, R. D., Jurkovitz, C. & Presley, R. Anemia and renal insufficiency are independent risk factors death among patients with congestive heart failure admitted to community hospitals: a population-based study. J. Am. Soc. Nephrol. 13, 1928–1936 (2002).

    PubMed  Google Scholar 

  15. Anand, I. S. et al. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive heart failure. Circulation 80, 299–305 (1989).

    CAS  PubMed  Google Scholar 

  16. Westenbrink, B. D. et al. Anaemia in chronic heart failure is not only related to impaired renal perfusion and blunted erythropoietin production, but to fluid retention as well. Eur. Heart J. 28, 166–171 (2007).

    CAS  PubMed  Google Scholar 

  17. Androne, A. S. et al. Hemodilution is common in patients with advanced heart failure. Circulation 107, 226–229 (2003).

    PubMed  Google Scholar 

  18. Van der Meer, P. et al. Levels of hematopoiesis inhibitor N-acetyl-seryl-aspartyl-lysyl-proline partially explain the occurrence of anemia in heart failure. Circulation 112, 1743–1747 (2005).

    CAS  PubMed  Google Scholar 

  19. Anand, I. S. et al. Anemia and change in haemoglobin over time related to mortality and morbidity in patients with chronic heart failure: results from Val-HeFT Circulation 112, 1121–1127 (2005).

    CAS  PubMed  Google Scholar 

  20. Komajda, M. et al. The impact of new onset anemia on morbidity and mortality in chronic heart failure: results from COMET. Eur. Heart J. 27, 1440–1446 (2006).

    PubMed  Google Scholar 

  21. Von Haehling, S. et al. Anaemia among patients with heart failure and preserved or reduced ejection fraction: results from the SENIORS Study. Eur. J. Heart Fail. 13, 656–663 (2011).

    PubMed  Google Scholar 

  22. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    CAS  PubMed  Google Scholar 

  23. Westenbrink, B. D. et al. Bone marrow dysfunction in chronic heart failure patients. Eur. J. Heart Fail. 12, 676–684 (2010).

    CAS  PubMed  Google Scholar 

  24. Kissel, C. K. et al. Selective functional exhaustion of haematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J. Am. Coll. Cardiol. 49, 2341–2349 (2007).

    PubMed  Google Scholar 

  25. Okonko, D. O. et al. Association of deranged adrenal steroid metabolism with anemia in chronic heart failure. Am. J. Cardiol. 96, 101–103 (2005).

    CAS  PubMed  Google Scholar 

  26. Van der Meer, P. et al. Adequacy of endogenous erythropoietin levels and mortality in anemic heart failure patients. Eur. Heart J. 29, 1510–1515 (2008).

    CAS  PubMed  Google Scholar 

  27. Opasich, C. et al. Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anemia in patients with chronic heart failure. Eur. Heart J. 26, 2232–2237 (2005).

    CAS  PubMed  Google Scholar 

  28. Witte, K. K. et al. Are hematinic deficiencies the cause of anemia in chronic heart failure? Am. Heart J. 147, 924–930 (2004).

    PubMed  Google Scholar 

  29. Wong, L. S. et al. Anaemia is associated with shorter telomere length in patients with chronic heart failure. Eur. J. Heart Fail. 12, 348–353 (2010).

    CAS  PubMed  Google Scholar 

  30. de Silva, R. et al. Anemia, renal dysfunction, and their interaction in patients with chronic heart failure. Am. J. Cardiol. 98, 391–398 (2006).

    PubMed  Google Scholar 

  31. Nanas, J. N. et al. Etiology of anemia in patients with advanced heart failure. J. Am. Coll. Cardiol. 48, 2485–2489 (2006).

    PubMed  Google Scholar 

  32. Anker, S. D. et al. Rationale and design of Ferinject Assessment in patients with IRon deficiency and chronic Heart Failure (FAIR-HF) study: a randomized, placebo-controlled study of intravenous iron supplementation in patients with and without anaemia. Eur. J. Heart Fail. 11, 1084–1091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    CAS  PubMed  Google Scholar 

  34. González-Costello, J. & Comín-Colet, J. Iron deficiency and anemia in heart failure: understanding the FAIR-HF trial. Eur. J. Heart Fail. 12, 1159–1162 (2010).

    PubMed  Google Scholar 

  35. Jankowska, E. A. et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 31, 1872–1880 (2010).

    CAS  PubMed  Google Scholar 

  36. Cavill, I. Intravenous iron as adjuvant therapy: a two-edged sword? Nephrol. Dial. Transplant. 18(Suppl 8), viii24–viii28 (2003).

    CAS  PubMed  Google Scholar 

  37. Silverberg, D. S, Iaina, A., Schwartz, D. & Wexler, D. Intravenous iron in heart failure: beyond targeting anemia. Curr. Heart Fail. Rep. 8, 14–21 (2011).

    CAS  PubMed  Google Scholar 

  38. Van der Meer, P. et al. Prognostic value of plasma erythropoietin on mortality in patients with chronic heart failure. J. Am. Coll. Cardiol. 44, 63–67 (2004).

    CAS  PubMed  Google Scholar 

  39. Belonje, A. M., Voors, A. A., Van der Meer, P., Van Gilst. W. H. & Van Veldhuisen, D. J. Endogenous erythropoietin and outcome in heart failure. Circulation 121, 245–251 (2010).

    CAS  PubMed  Google Scholar 

  40. Macdougall, I. C. & Eckardt, K. U. Novel strategies for stimulating erythropoiesis and potential new treatments for anaemia. Lancet 368, 947–953 (2006).

    CAS  PubMed  Google Scholar 

  41. Silverberg, D. S. et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J. Am. Coll. Cardiol. 35, 1737–1744 (2000).

    CAS  PubMed  Google Scholar 

  42. Silverberg, D. S. et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J. Am. Coll. Cardiol. 37, 1775–1780 (2001).

    CAS  PubMed  Google Scholar 

  43. Mancini, D. M. et al. Effect of erythropoietin on exercise capacity in patients with moderate to severe heart chronic failure. Circulation 107, 294–299 (2003).

    CAS  PubMed  Google Scholar 

  44. Palazzuoli, A. et al. Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. Am. Heart J. 152, 1096–1015 (2006).

    PubMed  Google Scholar 

  45. Parassis, J. T. et al. Effects of darbepoetin alfa on right and left ventricular systolic and diastolic function in anemic patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. Heart J. 155, 751–757 (2008).

    Google Scholar 

  46. Ponikowski, P. et al. Effect of darbepoetin alfa on exercise tolerance in anemic patients with symptomatic chronic heart failure: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 49, 753–762 (2007).

    CAS  PubMed  Google Scholar 

  47. Van Veldhuisen, D. J. et al. Randomized, double-blind, placebo-controlled study to evaluate the effect of two dosing regimens of darbepoetin alfa in patients with heart failure and anaemia. Eur. Heart J. 18, 2208–2216 (2007).

    Google Scholar 

  48. Ghali, J. K. et al. Randomized double-blind trial of darbepoetin alfa in patients with symptomatic heart failure and anemia. Circulation 117, 526–535 (2008).

    CAS  PubMed  Google Scholar 

  49. Van der Meer, P., Groenveld, H. F., Januzzi, J. L. & Van Veldhuisen, D. J. Erythropoietin treatment in patients with chronic heart failure: a meta-analysis. Heart 95, 1309–1314 (2009).

    CAS  PubMed  Google Scholar 

  50. McMurray, J. J. et al. Design of the Reduction of Events with darbepoetin alfa in Heart Failure (RED-HF): a phase III, anaemia correction, morbidity-mortality trial. Eur. J. Heart Fail. 11, 795–801 (2009).

    CAS  PubMed  Google Scholar 

  51. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    CAS  PubMed  Google Scholar 

  52. Drueke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    CAS  PubMed  Google Scholar 

  53. Van Veldhuisen, D. J. & McMurray, J. J. Are erythropoietin stimulating proteins safe and efficacious in heart failure? Why we need an adequately powered randomised outcome trial. Eur. J. Heart Fail. 9, 110–112 (2007).

    CAS  PubMed  Google Scholar 

  54. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    PubMed  Google Scholar 

  55. Desai, A., Lewis, E., Solomon, S., McMurray, J. J. & Pfeffer, M. Impact of erythropoiesis-stimulating agents on morbidity and mortality in patients with heart failure: an updated, post-TREAT meta-analysis. Eur. J. Heart Fail. 12, 936–942 (2010).

    PubMed  Google Scholar 

  56. Szczech, L. A. et al. A secondary analysis of the CHOIR trial shows that comorbid conditions differentially affect outcomes during anemia treatment. Kidney Int. 77, 239–246 (2010).

    CAS  PubMed  Google Scholar 

  57. Westenbrink, B. D. et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur. Heart J. 28, 2018–2027 (2007).

    CAS  PubMed  Google Scholar 

  58. De Boer, R. A., Pinto, Y. M., Van Veldhuisen, D. J. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Mircocirculation 10, 113–126 (2003).

    Google Scholar 

  59. Lipsic, E. et al. Protective effects of erythropoietin in cardiac ischemia: from bench to bedside. J. Am. Coll. Cardiol. 48, 2161–2167 (2006).

    CAS  PubMed  Google Scholar 

  60. Voors, A. A. et al. A single dose of erythropoietin in ST-elevation myocardial infarction. Eur. Heart J. 31, 2593–2600 (2010).

    CAS  PubMed  Google Scholar 

  61. Binbrek, A. S., Rao, N. S., Al Khaja, N., Asseqqaf, J. & Sobel, B. E. Erythropoietin to augment myocardial salvage induced by coronary thrombolysis in patients with ST-elevation acute myocardial infarction. Am. J. Cardiol. 104, 1035–1040 (2009).

    CAS  PubMed  Google Scholar 

  62. Ehrenreich, H. et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol. Med. 8, 495–505 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ehrenreich, H. et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40, e647–e656 (2009).

    CAS  PubMed  Google Scholar 

  64. Van der Meer, P. et al. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur. J. Heart Fail. 6, 853–859 (2004).

    CAS  PubMed  Google Scholar 

  65. Koury, M. J. & Bondurant, M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248, 378–381 (1990).

    CAS  PubMed  Google Scholar 

  66. Lipsic, E. et al. Low-dose erythropoietin improves cardiac function in experimental heart failure without increasing haematocrit. Eur. J. Heart Fail. 10, 22–29 (2008).

    CAS  PubMed  Google Scholar 

  67. Moon, C. et al. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. J. Pharmacol. Exp. Ther. 316, 999–1005 (2006).

    CAS  PubMed  Google Scholar 

  68. Ogino, A. et al. Erythropoietin receptor signalling mitigates renal dysfunction-associated heart failure by mechanisms unrelated to relief of anemia. J. Am. Coll. Cardiol. 56, 1949–1958 (2010).

    CAS  PubMed  Google Scholar 

  69. Klapholz, M. et al. The safety and tolerability of darbepoetin alfa in patients with anaemia and heart failure. Eur. J. Heart Fail. 11, 1071–1077 (2009).

    CAS  PubMed  Google Scholar 

  70. Kazory, A. & Ross, E. A. Anemia: the point of convergence or divergence for kidney disease and heart failure. J. Am. Coll. Cardiol. 53, 639–647 (2009).

    PubMed  Google Scholar 

  71. Phrommintikul, A., Haas, S. J., Elsik, M. & Krum, H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet 369, 381–388 (2007).

    CAS  PubMed  Google Scholar 

  72. Macdougall, I. C. & Cooper, A. C. Hyporesponsiveness to erythropoietic therapy due to chronic inflammation. Eur. J. Clin. Invest. 35 (Suppl 3), 32–35 (2005).

    CAS  PubMed  Google Scholar 

  73. Regidor, D. L. et al. Associations between changes in haemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J. Am. Soc. Nephrol. 17, 1181–1191 (2006).

    CAS  PubMed  Google Scholar 

  74. Solomon, S. D. et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 363, 1146–1155 (2010).

    CAS  PubMed  Google Scholar 

  75. Abraham, W. T. et al. Treatment of anemia with darbepoetin alfa in heart failure. Congest. Heart Fail. 16, 87–95 (2010).

    CAS  PubMed  Google Scholar 

  76. Rossert, J., Gassmann-Mayer, C., Frei, D. & McClellan, W. Prevalence and predictors of epoetin hyporeponsiveness in chronic kidney disease patients. Nephrol. Dial. Transplant. 22, 794–800 (2007).

    PubMed  Google Scholar 

  77. Van der Putten, K. et al. Hepcidin-25 is a marker of the response rather than resistance to exogenous erythropoietin in chronic kidney disease/chronic heart failure patients. Eur. J. Heart Fail. 12, 943–950 (2010).

    CAS  PubMed  Google Scholar 

  78. Dallalio, G., Law, E. & Means, R. T. Jr. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood 107, 2702–2704 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Streja, E. et al. Erythropoietin, iron depletion, and relative thrombocytosis: a possible explanation for hemoglobin-survival paradox in hemodialysis. Am. J. Kidney Dis. 52, 727–736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dahl, N. V., Henry, D. H. & Coyne, D. W. Thrombosis with erythropoietic stimulating agents- Does iron deficient erythropoiesis play a role? Semin. Dial. 21, 210–211 (2008).

    PubMed  Google Scholar 

  81. Fairbanks, V. & Beutler, E. in Williams Hematology 6th edn (ed Beutler, E.) 295–304, 447–440 (McGraw-Hill, New York, 2001).

    Google Scholar 

  82. Dunn, L. L., Rahmanto, Y. S. & Richardson, D. R. Iron uptake and metabolism in the new millennium. Trends Cell Biol. 17, 93–100 (2007).

    CAS  PubMed  Google Scholar 

  83. Anderson, G. J. & Vulpe, C. D. Mammalian iron transport. Cell. Mol. Life Sci. 66, 3241–3261 (2009).

    CAS  PubMed  Google Scholar 

  84. Cairo, G., Bernuzzi, F. & Recalcati, S. A precious metal: iron, an essential nutrient for all cells. Genes Nutr. 1, 25–39 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Andrews, N. C. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999).

    CAS  PubMed  Google Scholar 

  86. Sutak, R., Lesuisse, E., Tachezy, J. & Richardson, D. R. Crusade for iron: iron uptake in unicellular eukaryocytes and its significance for virulence. Trends Microbiol. 16, 261–268 (2008).

    CAS  PubMed  Google Scholar 

  87. Wilson, M. T. & Reeder, B. J. Oxygen-binding haem proteins. Exp. Physiol. 93, 128–132 (2008).

    CAS  PubMed  Google Scholar 

  88. Zimmerman, M. B. & Hurrell, R. F. Nutritional iron deficiency. Lancet 370, 511–520 (2007).

    Google Scholar 

  89. Anker, S. D. & Sharma, R. The syndrome of cardiac cachexia. Int. J. Cardiol. 85, 51–66 (2002).

    PubMed  Google Scholar 

  90. Weiss, G. Iron metabolism in the anemia of chronic disease. Biochim. Biophys. Acta 1790, 682–693 (2009).

    CAS  PubMed  Google Scholar 

  91. Gisbert, J. P. & Gomollon, F. An update on iron physiology. World J. Gastroenterol. 15, 4659–4665 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Dong, F. et al. Dietary iron deficiency induce ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthese and protein tyrosine nitration. Clin. Sci. (Lond.) 109, 277–286 (2005).

    CAS  Google Scholar 

  93. Brownlie, T., Utermohlen, V., Hinton, P. S. & Haas, J. D. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am. J. Clin. Nutr. 79, 437–443 (2004).

    CAS  PubMed  Google Scholar 

  94. Haas, J. D. & Brownlie, T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J. Nutr. 131, 676S–690S (2001).

    CAS  PubMed  Google Scholar 

  95. Handelman, G. J. & Levin, N. W. Iron anemia in human biology. A review of mechanisms. Heart Fail. Rev. 13, 393–404 (2008).

    PubMed  Google Scholar 

  96. Merck Research Laboratories, Merck & Co Inc. The Merck Manual of Diagnosis and Therapy 16th edn 1144 (Merck & Co Inc., Rahway, 1992).

  97. Mann, D. L. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ. Res. 91, 988–998 (2002).

    CAS  PubMed  Google Scholar 

  98. Heymans, S. et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 11, 119–129 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Naito, Y. et al. Impaired expression of duodenal iron transporters in Dahl salt-sensitive heart failure rats. J. Hypertens. 29, 741–748 (2011).

    CAS  PubMed  Google Scholar 

  100. Merle, U., Fein, E., Gehrke, S. G., Stremmel, W. & Kulaksiz, H. The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology 148, 2663–2668 (2007).

    CAS  PubMed  Google Scholar 

  101. Matsumoto, M. et al. Iron regulatory hormone hepcidin decreases in chronic heart failure patients with anemia. Circ. J. 74, 301–306 (2010).

    CAS  PubMed  Google Scholar 

  102. Nicholas, G. et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc. Natl. Acad. Sci. U. S. A. 99, 4596–4601 (2002).

    Google Scholar 

  103. Ganz, T. & Nemeth, E. Hepcidin and disorders of iron metabolism. Annu. Rev. Med. 62, 347–360 (2011).

    CAS  PubMed  Google Scholar 

  104. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    CAS  PubMed  Google Scholar 

  105. Sunder-Plassmann, G. & Höri, W. H. Iron metabolism and iron substitution during erythropoietin therapy. Clin. Invest. 72, S11–S15 (1994).

    CAS  Google Scholar 

  106. Macdougall, I. C. et al. A randomized controlled study of iron supplementation in patients treated with erythropoietin. Kidney Int. 50, 1694–1699 (1996).

    CAS  PubMed  Google Scholar 

  107. Van Wyck, D. B., Roppolo, M., Martinez, C. O., Mazey, R. M. & McMurray, S, for the United States Iron Sucrose (Venefor) Clinical Trials Group. A randomized, controlled trial comparing IV iron sucrose to oral iron in anemic patients with nondialysis-dependent CKD. Kidney Int. 68, 2846–2856 (2005).

    CAS  PubMed  Google Scholar 

  108. Besarab, A., Hörl, W. H. & Silverberg, D. Iron metabolism, iron deficiency, thrombocytosis, and the cardiorenal anemia syndrome. The Oncologist 14 (Suppl 1), 22–33 (2009).

    CAS  PubMed  Google Scholar 

  109. Weinberg, E. D. The hazards of iron loading. Metallomics 2, 732–740 (2010).

    CAS  PubMed  Google Scholar 

  110. Sullivan, J. L. Long-term risk of increased use of intravenous iron. Lancet 370, 481–482 (2007).

    PubMed  Google Scholar 

  111. Cooper, C. E. Nitric oxide and iron proteins. Biochim. Biophys. Acta 1411, 290–309 (1999).

    CAS  PubMed  Google Scholar 

  112. Comín-Colet, J. et al. A pilot evaluation of the long-term effect of combined therapy with intravenous iron sucrose and erythropoietin in elderly patients with advanced chronic heart failure and cardio-renal anemia syndrome: influence on neurohormonal activation and clinical outcomes. J. Card. Fail. 15, 727–735 (2009).

    PubMed  Google Scholar 

  113. Bolger, A. P. et al. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J. Am. Coll. Cardiol. 48, 1225–1227 (2006).

    CAS  PubMed  Google Scholar 

  114. Usmanov, R. I., Zueva, E. B., Silverberg, D. S. & Shaked, M. Intravenous iron without erythropoietin for the treatment of iron deficiency anemia in patients with moderate to severe congestive heart failure and chronic kidney insufficiency. J. Nephrol. 21, 236–242 (2008).

    CAS  PubMed  Google Scholar 

  115. Toblli, J. E., Lombraña, A., Duarte, P. & Di Genarro, F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemia patients with chronic heart failure and renal insufficiency. J. Am. Coll. Cardiol. 50, 1657–1665 (2007).

    CAS  PubMed  Google Scholar 

  116. Okonko, D. O. et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with chronic heart failure and iron deficiency. FERRIC-HF: a randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 51, 103–112 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussion of content for the article. After the first version, which was written by D. J. van Veldhuisen, all authors researched data to include in the manuscript, and all wrote parts of the manuscript. All authors reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Dirk J. van Veldhuisen.

Ethics declarations

Competing interests

D. J. van Veldhuisen, S. D. Anker and P. Ponikowski have been consultants for and received grant/research support from Amgen (manufacturer of darbepoetin alfa) and Vifor (manufacturer of ferric carboxymaltose [intravenous iron]). In addition, S. D. Anker and P. Ponikowski have received speakers bureau (honoraria) from Vifor, and P. Ponikowski has also received speakers bureau from Amgen. I. C. Macdougall has been a consultant for and received speakers bureau and grant/research support from Amgen, Ortho Biotech, Roche and Vifor. In addition, I. C. Macdougall has been a consultant for and received grant/research support from Affymax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Veldhuisen, D., Anker, S., Ponikowski, P. et al. Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches. Nat Rev Cardiol 8, 485–493 (2011). https://doi.org/10.1038/nrcardio.2011.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing