Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sudden cardiac death: epidemiology and risk factors

Abstract

Sudden cardiac death (SCD) is an important public-health problem with multiple etiologies, risk factors, and changing temporal trends. Substantial progress has been made over the past few decades in identifying markers that confer increased SCD risk at the population level. However, the quest for predicting the high-risk individual who could be a candidate for an implantable cardioverter-defibrillator, or other therapy, continues. In this article, we review the incidence, temporal trends, and triggers of SCD, and its demographic, clinical, and genetic risk factors. We also discuss the available evidence supporting the use of public-access defibrillators.

Key Points

  • Sudden cardiac death (SCD) is a common public health problem that causes more than 60% of all deaths from cardiovascular disease

  • Coronary heart disease underlies 80% of SCD cases; SCD is the first manifestation of heart disease in 50% of these individuals

  • Prospective surveillance programs, using multiple sources to identify cases of SCD, would enable more accurate determination of SCD burden in the community

  • Demographic, clinical, structural, laboratory, and genetic risk factors lack the specificity to identify individuals at high risk for SCD when used alone; multimarker SCD risk scores may improve SCD prediction

  • The risk of SCD after a coronary event changes with time, therefore, dynamic risk-profiling is important

  • Survival after sudden cardiac arrest is 5% and many individuals do not receive cardiopulmonary resuscitation or defibrillation; educating the public to use automated external defibrillators will be important to improving survival

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Age distribution of sudden cardiac death among residents of Multnomah County, OR, USA (population 660,486) between 1 February 2002 and 31 January 2003.
Figure 3: Cumulative incidence of sudden cardiac death and all-cause mortality after myocardial infarction among residents of Olmsted County, MN, USA.
Figure 4: Distribution of clinical status of individuals who suffer sudden cardiac death.

Similar content being viewed by others

References

  1. Zheng, Z. J., Croft, J. B., Giles, W. H. & Mensah, G. A. Sudden cardiac death in the United States, 1989 to 1998. Circulation 104, 2158–2163 (2001).

    CAS  PubMed  Google Scholar 

  2. Chugh, S. S. et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog. Cardiovasc. Dis. 51, 213–228 (2008).

    PubMed  PubMed Central  Google Scholar 

  3. Zipes, D. P. & Wellens, H. J. Sudden cardiac death. Circulation 98, 2334–2251 (1998).

    CAS  PubMed  Google Scholar 

  4. Engdahl, J., Holmberg, M., Karlson, B. W., Luepker, R. & Herlitz, J. The epidemiology of out-of-hospital 'sudden' cardiac arrest. Resuscitation 52, 235–245 (2002).

    CAS  PubMed  Google Scholar 

  5. Myerburg, R. J. Scientific gaps in the prediction and prevention of sudden cardiac death. J. Cardiovasc. Electrophysiol. 13, 709–723 (2002).

    PubMed  Google Scholar 

  6. Myerburg, R. J., Reddy, V. & Castellanos, A. Indications for implantable cardioverter-defibrillators based on evidence and judgment. J. Am. Coll. Cardiol. 54, 747–763 (2009).

    PubMed  Google Scholar 

  7. Kannel, W. B. Clinical misconceptions dispelled by epidemiological research. Circulation 92, 3350–3360 (1995).

    CAS  PubMed  Google Scholar 

  8. Myerburg, R. & Castellanos, A. in Braunwald's Heart Disease. A Textbook of Cardiovascular Medicine 8th edn (eds Libby, P., Bonow, R. O., Mann, D. L. & Zipes, D. P.) 933–974 (Saunders, Philadelphia, 2007).

    Google Scholar 

  9. Pratt, C. M., Greenway, P. S., Schoenfeld, M. H., Hibben, M. L. & Reiffel, J. A. Exploration of the precision of classifying sudden cardiac death. Implications for the interpretation of clinical trials. Circulation 93, 519–524 (1996).

    CAS  PubMed  Google Scholar 

  10. Carlson, M. D. Classification of death in clinical trials: precision versus accuracy. J. Cardiovasc. Electrophysiol. 10, 1057–1059 (1999).

    CAS  PubMed  Google Scholar 

  11. Chugh, S. S. et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U. S. community. J. Am. Coll. Cardiol. 44, 1268–1275 (2004).

    PubMed  Google Scholar 

  12. Iribarren, C., Crow, R. S., Hannan, P. J., Jacobs, D. R. Jr & Luepker, R. V. Validation of death certificate diagnosis of out-of-hospital sudden cardiac death. Am. J. Cardiol. 82, 50–53 (1998).

    CAS  PubMed  Google Scholar 

  13. Fox, C. S. et al. A comparison of death certificate out-of-hospital coronary heart disease death with physician-adjudicated sudden cardiac death. Am. J. Cardiol. 95, 856–859 (2005).

    PubMed  Google Scholar 

  14. Goraya, T. Y. et al. Validation of death certificate diagnosis of out-of-hospital coronary heart disease deaths in Olmsted county, Minnesota. Mayo Clin. Proc. 75, 681–687 (2000).

    CAS  PubMed  Google Scholar 

  15. Cobb, L. A., Fahrenbruch, C. E., Olsufka, M. & Copass, M. K. Changing incidence of out-of-hospital ventricular fibrillation, 1980–2000 JAMA 288, 3008–3013 (2002).

    PubMed  Google Scholar 

  16. Kass, L. E. et al. One-year survival after prehospital cardiac arrest: the Utstein style applied to a rural–suburban system. Am. J. Emerg. Med. 12, 17–20 (1994).

    CAS  PubMed  Google Scholar 

  17. Lombardi, G., Gallagher, J. & Gennis, P. Outcome of out-of-hospital cardiac arrest in New York City. The Pre-Hospital Arrest Survival Evaluation (PHASE) Study. JAMA 271, 678–683 (1994).

    CAS  PubMed  Google Scholar 

  18. de Vreede-Swagemakers, J. J. et al. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol. 30, 1500–1505 (1997).

    CAS  PubMed  Google Scholar 

  19. Hua, W. et al. Incidence of sudden cardiac death in China: analysis of 4 regional populations. J. Am. Coll. Cardiol. 54, 1110–1118 (2009).

    PubMed  Google Scholar 

  20. Byrne, R. et al. Multiple source surveillance incidence and aetiology of out-of-hospital sudden cardiac death in a rural population in the west of Ireland. Eur. Heart J. 29, 1418–1423 (2008).

    PubMed  Google Scholar 

  21. Fox, C. S., Evans, J. C., Larson, M. G., Kannel, W. B. & Levy, D. Temporal trends in coronary heart disease mortality and sudden cardiac death from 1950 to 1999: the Framingham Heart Study. Circulation 110, 522–527 (2004).

    PubMed  Google Scholar 

  22. Jouven, X., Desnos, M., Guerot, C. & Ducimetière, P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation 99, 1978–1983 (1999).

    CAS  PubMed  Google Scholar 

  23. Ni, H. et al. Trends from 1987 to 2004 in sudden death due to coronary heart disease: the Atherosclerosis Rsk in Communities (ARIC) Study. Am. Heart J. 157, 46–52 (2009).

    PubMed  Google Scholar 

  24. Luepker, R. V. Decline in incident coronary heart disease: why are the rates falling? Circulation 117, 592–593 (2008).

    PubMed  Google Scholar 

  25. McGovern, P. G. et al. Trends in acute coronary heart disease mortality, morbidity, and medical care from 1985 through 1997: the Minnesota heart survey. Circulation 104, 19–24 (2001).

    CAS  PubMed  Google Scholar 

  26. Bunch, T. J. et al. Long-term outcomes of out-of-hospital cardiac arrest after successful early defibrillation. N. Engl. J. Med. 348, 2626–2633 (2003).

    PubMed  Google Scholar 

  27. Rea, T. D., Crouthamel, M., Eisenberg, M. S., Becker, L. J. & Lima, A. R. Temporal patterns in long-term survival after resuscitation from out-of-hospital cardiac arrest. Circulation 108, 1196–1201 (2003).

    PubMed  Google Scholar 

  28. Shen, W. K. et al. Sudden unexpected nontraumatic death in 54 young adults: a 30-year population-based study. Am. J. Cardiol. 76, 148–152 (1995).

    CAS  PubMed  Google Scholar 

  29. Gerber Y. et al. Secular trends in deaths from cardiovascular diseases: a 25-year community study. Circulation 113, 2285–2292 (2006).

    PubMed  Google Scholar 

  30. Gillum, R. F. Sudden cardiac death in Hispanic Americans and African Americans. Am. J. Public Health 87, 1461–1466 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, P. S. et al. Racial differences in survival after in-hospital cardiac arrest. JAMA 302, 1195–1201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Muller, D., Agrawal, R. & Arntz, H. R. How sudden is sudden cardiac death? Circulation 114, 1146–1450 (2006).

    PubMed  Google Scholar 

  33. Weaver, W. D. & Peberdy, M. A. Defibrillators in public places—one step closer to home. N. Engl. J. Med. 347, 1223–1224 (2002).

    PubMed  Google Scholar 

  34. Becker, L., Eisenberg, M., Fahrenbruch, C. & Cobb, L. Public locations of cardiac arrest. Implications for public access defibrillation. Circulation 97, 2106–2109 (1998).

    CAS  PubMed  Google Scholar 

  35. Muller, D., Lampe, F., Wegscheider, K., Schultheiss, H. P. & Behrens, S. Annual distribution of ventricular tachycardias and ventricular fibrillation. Am. Heart J. 146, 1061–1065 (2003).

    PubMed  Google Scholar 

  36. Arntz, H. R. et al. Diurnal, weekly and seasonal variation of sudden death. Population-based analysis of 24,061 consecutive cases. Eur. Heart J. 21, 315–320 (2000).

    CAS  PubMed  Google Scholar 

  37. Willich, S. N., Goldberg, R. J., Maclure, M., Perriello, L. & Muller, J. E. Increased onset of sudden cardiac death in the first three hours after awakening. Am. J. Cardiol. 70, 65–68 (1992).

    CAS  PubMed  Google Scholar 

  38. Gerber, Y., Jacobsen, S. J., Killian, J. M., Weston, S. A. & Roger, V. L. Seasonality and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted county, Minnesota, 1979 to 2002. J. Am. Coll. Cardiol. 48, 287–292 (2006).

    PubMed  Google Scholar 

  39. Lopshire, J. C. & Zipes, D. P. Sudden cardiac death: better understanding of risks, mechanisms, and treatment. Circulation 114, 1134–1136 (2006).

    PubMed  Google Scholar 

  40. Valenzuela, T. D. et al. Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N. Engl. J. Med. 343, 1206–1209 (2000).

    CAS  PubMed  Google Scholar 

  41. Kuisma, M., Repo, J. & Alaspaa, A. The incidence of out-of-hospital ventricular fibrillation in Helsinki, Finland, from 1994 to 1999. Lancet 358, 473–474 (2001).

    CAS  PubMed  Google Scholar 

  42. Herlitz, J. et al. Experiences from treatment of out-of-hospital cardiac arrest during 17 years in Göteborg. Eur. Heart J. 21, 1251–1258 (2000).

    CAS  PubMed  Google Scholar 

  43. Adabag, A. S., Therneau, T. M., Gersh, B. J., Weston, S. A. & Roger, V. L. Sudden death after myocardial infarction. JAMA 300, 2022–2029 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Solomon, S. D. et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N. Engl. J. Med. 352, 2581–2588 (2005).

    CAS  PubMed  Google Scholar 

  45. Berger, C. J., Murabito, J. M., Evans, J. C., Anderson, K. M. & Levy, D. Prognosis after first myocardial infarction. Comparison of Q-wave and non-Q-wave myocardial infarction in the Framingham Heart Study. JAMA 268, 1545–1551 (1992).

    CAS  PubMed  Google Scholar 

  46. Mehta, R. H. et al. Incidence of and outcomes associated with ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention. JAMA 301, 1779–1789 (2009).

    CAS  PubMed  Google Scholar 

  47. Zaman, S. et al. Outcomes of early risk stratification and targeted implantable cardioverter-defibrillator implantation after ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Circulation 120, 194–200 (2009).

    CAS  PubMed  Google Scholar 

  48. Marcus, F. I. et al. Mechanism of death and prevalence of myocardial ischemic symptoms in the terminal event after acute myocardial infarction. Am. J. Cardiol. 61, 8–15 (1988).

    CAS  PubMed  Google Scholar 

  49. Huikuri, H. V. et al. Prediction of sudden cardiac death after myocardial infarction in the beta-blocking era. J. Am. Coll. Cardiol. 42, 652–658 (2003).

    PubMed  Google Scholar 

  50. Makikallio, T. H. et al. Frequency of sudden cardiac death among acute myocardial infarction survivors with optimized medical and revascularization therapy. Am. J. Cardiol. 97, 480–484 (2006).

    PubMed  Google Scholar 

  51. Mukharji, J. et al. Risk factors for sudden death after acute myocardial infarction: two-year follow-up. Am. J. Cardiol. 54, 31–36 (1984).

    CAS  PubMed  Google Scholar 

  52. Singh, J. P. et al. Factors influencing appropriate firing of the implanted defibrillator for ventricular tachycardia/fibrillation: findings from the multicenter automatic defibrillator implantation trial II (MADIT-II). J. Am. Coll. Cardiol. 46, 1712–1720 (2005).

    PubMed  Google Scholar 

  53. Goldenberg, I. et al. Current smoking, smoking cessation, and the risk of sudden cardiac death in patients with coronary artery disease. Arch. Intern. Med. 163, 2301–2305 (2003).

    PubMed  Google Scholar 

  54. Jouven, X. et al. Diabetes, glucose level, and risk of sudden cardiac death. Eur. Heart J. 26, 2142–2147 (2005).

    PubMed  Google Scholar 

  55. Cupples, L. A., Gagnon, D. R. & Kannel, W. B. Long- and short-term risk of sudden coronary death. Circulation 85 (1 Suppl.), I11–I18 (1992).

    CAS  PubMed  Google Scholar 

  56. Buxton, A. E. Risk stratification for sudden death in patients with coronary artery disease. Heart Rhythm 6, 836–847 (2009).

    PubMed  Google Scholar 

  57. Buxton, A. E. et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: lessons from the MUSTT study. J. Am. Coll. Cardiol. 50, 1150–1157 (2007).

    PubMed  Google Scholar 

  58. McLenachan, J. M. & Dargie, H. J. Left ventricular hypertrophy as a factor in arrhythmias and sudden death. Am. J. Hypertens. 2, 128–131 (1989).

    CAS  PubMed  Google Scholar 

  59. Adabag, A. S. et al. Relation of heart rate parameters during exercise test to sudden death and all-cause mortality in asymptomatic men. Am. J. Cardiol. 101, 1437–1443 (2008).

    PubMed  PubMed Central  Google Scholar 

  60. Anderson, K. P. Risk assessment for defibrillator therapy: Il Trittico. J. Am. Coll. Cardiol. 50, 1158–1160 (2007).

    PubMed  Google Scholar 

  61. Goldenberg, I. et al. Risk stratification for primary implantation of a cardioverter-defibrillator in patients with ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 51, 288–296 (2008).

    PubMed  Google Scholar 

  62. Levy, W. C. et al. Maximizing survival benefit with primary prevention implantable cardioverter-defibrillator therapy in a heart failure population. Circulation 120, 835–842 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Davies, M. J. Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation 85 (1 Suppl.), I19–I24 (1992).

    CAS  PubMed  Google Scholar 

  64. Burke, A. P. et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336, 1276–1282 (1997).

    CAS  PubMed  Google Scholar 

  65. Farb, A. et al. Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 92, 1701–1709 (1995).

    CAS  PubMed  Google Scholar 

  66. Chugh, S. S., Kelly, K. L. & Titus, J. L. Sudden cardiac death with apparently normal heart. Circulation 102, 649–654 (2000).

    CAS  PubMed  Google Scholar 

  67. Kwong, R. Y. et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113, 2733–2743 (2006).

    PubMed  Google Scholar 

  68. Adabag, A. S. et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 51, 1369–1374 (2008).

    PubMed  Google Scholar 

  69. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, 480–486 (2009).

    PubMed  Google Scholar 

  70. Saxon, L. A. Sudden cardiac death: epidemiology and temporal trends. Rev. Cardiovasc. Med. 6 (Suppl. 2), S12–S20 (2005).

    PubMed  Google Scholar 

  71. Kannel, W. B., Plehn, J. F. & Cupples, L. A. Cardiac failure and sudden death in the Framingham study. Am. Heart J. 115, 869–875 (1988).

    CAS  PubMed  Google Scholar 

  72. Chugh, S. S. & Reinier, K. Predicting sudden death in the general population: another step, N terminal B-type natriuretic factor levels. Circulation 119, 2863–2864 (2009).

    PubMed  Google Scholar 

  73. Korngold, E. C. et al. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation 119, 2868–2876 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Berger, R. et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation 105, 2392–2397 (2002).

    PubMed  Google Scholar 

  75. Goldberger, J. J. et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death. A scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. J. Am. Coll. Cardiol. 52, 1179–1799 (2008).

    PubMed  Google Scholar 

  76. Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    CAS  PubMed  Google Scholar 

  77. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    PubMed  Google Scholar 

  78. Gorgels, A. P., Gijsbers, C., de Vreede-Swagemakers, J., Lousberg, A. & Wellens, H. J. Out-of-hospital cardiac arrest—the relevance of heart failure. The Maastricht Circulatory Arrest Registry. Eur. Heart J. 24, 1204–1209 (2003).

    PubMed  Google Scholar 

  79. Stecker, E. C. et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon Sudden Unexpected Death Study. J. Am. Coll. Cardiol. 47, 1161–1166 (2006).

    PubMed  Google Scholar 

  80. Zimetbaum, P. J. et al. Electrocardiographic predictors of arrhythmic death and total mortality in the multicenter unsustained tachycardia trial. Circulation 110, 766–769 (2004).

    PubMed  Google Scholar 

  81. Dhar, R. et al. Association of prolonged QRS duration with ventricular tachyarrhythmias and sudden cardiac death in the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II). Heart Rhythm 5, 807–813 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Morin, D. P. et al. QRS duration predicts sudden cardiac death in hypertensive patients undergoing intensive medical therapy: The LIFE study. Eur. Heart J. 30, 2908–2914 (2009).

    PubMed  Google Scholar 

  83. Das, M. K. & Zipes, D. P. Fragmented QRS: a predictor of mortality and sudden cardiac death. Heart Rhythm 6 (3 Suppl.), S8–S14 (2009).

    PubMed  Google Scholar 

  84. Ott, P. & Marcus, F. I. Electrocardiographic markers of sudden death. Cardiol. Clin. 24, 453–469 (2006).

    PubMed  Google Scholar 

  85. Al Aloul, B., Adabag, A. S., Houghland, M. A. & Tholakanahalli, V. Brugada pattern electrocardiogram associated with supratherapeutic phenytoin levels and the risk of sudden death. Pacing Clin. Electrophysiol. 30, 713–715 (2007).

    PubMed  Google Scholar 

  86. Algra, A., Tijssen, J. G., Roelandt, J. R., Pool, J. & Lubsen, J. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 83, 1888–1894 (1991).

    CAS  PubMed  Google Scholar 

  87. Chugh, S. S. et al. Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease: the Oregon Sudden Unexpected Death Study. Circulation 119, 663–670 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Stein, K. M. Noninvasive risk stratification for sudden death: signal-averaged electrocardiography, nonsustained ventricular tachycardia, heart rate variability, baroreflex sensitivity, and QRS duration. Prog. Cardiovasc. Dis. 51, 106–117 (2008).

    PubMed  Google Scholar 

  89. Noseworthy, P. A. & Newton-Cheh, C. Genetic determinants of sudden cardiac death. Circulation 118, 1854–1863 (2008).

    PubMed  Google Scholar 

  90. Mensah, G. A., Mokdad, A. H., Ford, E. S., Greenlund, K. J. & Croft, J. B. State of disparities in cardiovascular health in the United States. Circulation 111, 1233–1241 (2005).

    PubMed  Google Scholar 

  91. Soo, L., Huff, N., Gray, D. & Hampton, J. R. Geographical distribution of cardiac arrest in Nottinghamshire. Resuscitation 48, 137–147 (2001).

    CAS  PubMed  Google Scholar 

  92. Reinier, K. et al. Incidence of sudden cardiac arrest is higher in areas of low socioeconomic status: a prospective two year study in a large United States community. Resuscitation 70, 186–192 (2006).

    PubMed  Google Scholar 

  93. Ruberman, W., Weinblatt, E., Goldberg, J. D. & Chaudhary, B. S. Psychosocial influences on mortality after myocardial infarction. N. Engl. J. Med. 311, 552–559 (1984).

    CAS  PubMed  Google Scholar 

  94. Rozanski, A., Blumenthal, J. A., Davidson, K. W., Saab, P. G. & Kubzansky, L. The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology. J. Am. Coll. Cardiol. 45, 637–651 (2005).

    PubMed  Google Scholar 

  95. Dekker, L. R. et al. Familial sudden death is an important risk factor for primary ventricular fibrillation: a case–control study in acute myocardial infarction patients. Circulation 114, 1140–1145 (2006).

    PubMed  Google Scholar 

  96. Friedlander, Y. et al. Sudden death and myocardial infarction in first degree relatives as predictors of primary cardiac arrest. Atherosclerosis 162, 211–216 (2002).

    CAS  PubMed  Google Scholar 

  97. Kaikkonen, K. S., Kortelainen, M. L., Linna, E. & Huikuri, H. V. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation 114, 1462–1467 (2006).

    PubMed  Google Scholar 

  98. Prutkin, J. M. & Sotoodehnia, N. Genetics of sudden cardiac arrest. Prog. Cardiovasc. Dis. 50, 390–403 (2008).

    CAS  PubMed  Google Scholar 

  99. Chugh, S. S. et al. Postmortem molecular screening in unexplained sudden death. J. Am. Coll. Cardiol. 43, 1625–1629 (2004).

    CAS  PubMed  Google Scholar 

  100. Tester, D. J. & Ackerman, M. J. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J. Am. Coll. Cardiol. 49, 240–246 (2007).

    PubMed  Google Scholar 

  101. Tester, D. J., Spoon, D. B., Valdivia, H. H., Makielski, J. C. & Ackerman, M. J. Targeted mutational analysis of the RyR2-encoded cardiac ryanodine receptor in sudden unexplained death: a molecular autopsy of 49 medical examiner/coroner's cases. Mayo Clin. Proc. 79, 1380–1384 (2004).

    CAS  PubMed  Google Scholar 

  102. Albert, C. M. et al. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation 117, 16–23 (2008).

    CAS  PubMed  Google Scholar 

  103. Adabag, A. S. et al. Etiology of sudden death in the community: results of anatomic, metabolic and genetic evaluation. Am. Heart J. 159, 33–39 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002).

    CAS  PubMed  Google Scholar 

  105. Burke, A. et al. Role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks. Circulation 112, 798–802 (2005).

    CAS  PubMed  Google Scholar 

  106. Newton-Cheh, C. et al. Common genetic variation in KCNH2 is associated with QT interval duration: the Framingham Heart Study. Circulation 116, 1128–1136 (2007).

    CAS  PubMed  Google Scholar 

  107. Newton-Cheh, C. et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: the Framingham Heart Study. Heart Rhythm 2, 277–284 (2005).

    PubMed  Google Scholar 

  108. Pfeufer, A. et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ. Res. 96, 693–701 (2005).

    CAS  PubMed  Google Scholar 

  109. Aarnoudse, A. J. et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam study. Circulation 116, 10–16 (2007).

    PubMed  Google Scholar 

  110. Arking, D. E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651 (2006).

    CAS  PubMed  Google Scholar 

  111. Spooner, P. M. et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a National Heart, Lung, and Blood Institute workshop, part I. Circulation 103, 2361–2364 (2001).

    CAS  PubMed  Google Scholar 

  112. Spooner, P. M. et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a National Heart, Lung, and Blood Institute workshop, part II. Circulation 103, 2447–2452 (2001).

    CAS  PubMed  Google Scholar 

  113. Hung, J., Lam, J. Y., Lacoste, L. & Letchacovski, G. Cigarette smoking acutely increases platelet thrombus formation in patients with coronary artery disease taking aspirin. Circulation 92, 2432–2436 (1995).

    CAS  PubMed  Google Scholar 

  114. Hazinski, M. F. et al. Lay rescuer automated external defibrillator (“public access defibrillation”) programs: lessons learned from an international multicenter trial: Advisory statement from the American Heart Association Emergency Cardiovascular Committee; the Council on Cardiopulmonary, Perioperative, and Critical Care; and the Council on Clinical Cardiology. Circulation 111, 3336–3340 (2005).

    PubMed  Google Scholar 

  115. Gundry, J. W., Comess, K. A., DeRook, F. A., Jorgenson, D. & Bardy, G. H. Comparison of naive sixth-grade children with trained professionals in the use of an automated external defibrillator. Circulation 100, 1703–1707 (1999).

    CAS  PubMed  Google Scholar 

  116. Caffrey, S. L., Willoughby, P. J., Pepe, P. E. & Becker, L. B. Public use of automated external defibrillators. N. Engl. J. Med. 347, 1242–1247 (2002).

    PubMed  Google Scholar 

  117. White, R. D., Hankins, D. G. & Bugliosi, T. F. Seven years' experience with early defibrillation by police and paramedics in an emergency medical services system. Resuscitation 39, 145–151 (1998).

    CAS  PubMed  Google Scholar 

  118. Hallstrom, A. P. et al. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N. Engl. J. Med. 351, 637–646 (2004).

    CAS  PubMed  Google Scholar 

  119. Bardy, G. H. et al. Home use of automated external defibrillators for sudden cardiac arrest. N. Engl. J. Med. 358, 1793–1804 (2008).

    CAS  PubMed  Google Scholar 

  120. Nichol, G. et al. Essential features of designating out-of-hospital cardiac arrest as a reportable event: a scientific statement from the American Heart Association Emergency Cardiovascular Care Committee; Council on Cardiopulmonary, Perioperative, and Critical Care; Council on Cardiovascular Nursing; Council on Clinical Cardiology; and Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 117, 2299–2308 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by NIH grant number: NIH 5 R01 HL023727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Selcuk Adabag.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adabag, A., Luepker, R., Roger, V. et al. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol 7, 216–225 (2010). https://doi.org/10.1038/nrcardio.2010.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing