Skip to main content
Log in

The Role of Interleukin-6 in the Failing Heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Clinical studies have shown that circulating levels of interleukin (IL)-6 and other IL-6 related cytokines are increased in patients with congestive heart failure (CHF). Plasma IL-6 concentrations are related to decreasing functional status of the patient and provide important prognostic information. Experimental studies have produced compelling evidence that IL-6 and IL-6 related cytokines play a pivotal role in the regulation of cardiac myocyte hypertrophy and apoptosis. This review summarizes clinical and experimental data from this rapidly evolving field, which, taken together, strongly suggest that IL-6 and IL-6 related cytokines are intricately involved in the pathophysiology of the failing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirano T, Taga T, Nakano N, Yasukawa K, Kashiwamura S, Shimizu K, Nakajima K, Pyun KH, Kishimoto T. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA 1985;82:5490–5494.

    Google Scholar 

  2. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiyama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986;324:73–76.

    Google Scholar 

  3. Kishimoto T, Akira S. Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood 1995;86:1243–1254.

    Google Scholar 

  4. Paul SR, Bennett F, Calvetti JA, Kelleher K, Wood CR, O'Hara RM, Leary AC, Sibley B, Clark SC, Williams DA, Yang YC. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 1990;87:7512–7516.

    Google Scholar 

  5. Gearing DP, Gough NM, King JA, Hilton DJ, Nicola NA, Simpson RJ, Nice EC, Kelso A, Metcalf D. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 1987;6:3995–4002.

    Google Scholar 

  6. Malik N, Kallestad JC, Gunderson NL, Austin SD, Neubauer MG, Ochs V, Marquardt H, Zarling JM, Shoyab M, Wei CM, Linsley PS, Rose TM. Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M. Mol Cell Biol 1989;9:2847–2853.

    Google Scholar 

  7. Stöckli KA, Lottspeich F, Sendtner M, Masiakowski P, Carroll P, Götz R, Lindholm D, Thoenen H. Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 1989;342:920–923.

    Google Scholar 

  8. Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne WC, Knutzon DS, Yen R, Chien KR, Baker JB, Wood WI. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 1995;92:1142–1146.

    Google Scholar 

  9. Senaldi G, Varnum BC, Sarmiento U, Starnes C, Lile J, Scully S, Guo J, Elliott G, McNinch J, Shaklee CL, Freeman D, Manu F, Simonet WS, Boone T, Chang MS. Novel neurotropin-1/B cell-stimulating factor-3. A cytokine of the IL-6 family. Proc Natl Acad Sci USA 1999;96:11458–11463.

    Google Scholar 

  10. Peters M, Jacobs S, Ehlers M, Vollmer P, Müllberg J, Wolf E, Brem G, Meyer zum Büschenfelde KH, Rose-John S. The function of the soluble interleukin 6 (IL-6) receptor in vivo. Sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half life of IL-6. J Exp Med 1996;183:1399–1406.

    Google Scholar 

  11. M7#x00FC;ller-Newen G, Nöhne C, Keul R, Hemmann U, Müller-Esterl W, Wijdenes J, Brakenhoff JPJ, Hart MHL, Heinrich PC. Purification and characterization of the soluble interleukin-6 receptor from human plasma and identification of an isoform generated through alternative splicing. Eur J Biochem 1996;236:837–842.

    Google Scholar 

  12. Müllberg J, Durie FH, Otten-Evans C, Alderson MR, Rose-John S, Cosman D, Black RA, Mohler KM. A metalloproteinase inhibitor blocks shedding of all IL-6 receptor and the p60 TNF receptor. J Immunol 1995;155:5198–5205.

    Google Scholar 

  13. Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, Yancopoulos GD, Taga T, Kishimoto T. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane anchored gp130. Blood 1993;82:1120–1126.

    Google Scholar 

  14. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction. A report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 1996;27:1201–1206.

    Google Scholar 

  15. Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM. Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1996;77:723–727.

    Google Scholar 

  16. MacGowan GA, Mann DL, Kormos RL, Feldman AM, Murali S. Circulating interleukin-6 in severe heart failure. Am J Cardiol 1997;79:1128–1131.

    Google Scholar 

  17. Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998;31:391–398.

    Google Scholar 

  18. Aukrust P, Ueland T, Lien E, Bendtzen K, Müller F, Andreassen AK, Nordoy I, Aass H, Espevik T, Simonsen S, Froland SS, Gullestad L. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1999;83:376–382.

    Google Scholar 

  19. Dibbs Z, Thornby J, White BG, Mann DL. Natural variability of circulating levels of cytokines and cytokine receptors in patients with heart failure. Implications for clinical trials. J Am Coll Cardiol 1999;33:1935–1942.

    Google Scholar 

  20. Orus J, Roig E, Perez-Villa F, Pare C, Azqueta M, Filella X, Heras M, Sanz G. Prognostic value of serum cytokines in patients with congestive heart failure. J Heart Lung Transplant 2000;19:419–425.

    Google Scholar 

  21. Talwar S, Downie PF, Squire IB, Barnett DB, Davies JD, Ng LL. An immunoluminometric assay for cardiotrophin-1. A newly identified cytokine is present in normal human plasma and is increased in heart failure. Biochem Biophys Res Comm 1999;261:567–571.

    Google Scholar 

  22. Jirik FR, Podor TJ, Hirano T. Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J Immunol 1989;142:144–147.

    Google Scholar 

  23. Xin X, Cai Y, Matsumoto K, Agui T. Endothelininduced interleukin-6 production by rat aortic endothelial cells. Endocrinology 1995;136:132–137.

    Google Scholar 

  24. Han Y, Runge MS, Brasier AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-\(\kappa\)B transcription factors. Circ Res 1999;84:695–703.

    Google Scholar 

  25. Schieffer B, Schieffer E, Hilfiker-Kleiner D, Hilfiker A, Kovanen PT, Kaartinen M, Nussberger J, Harringer W, Drexler H. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques. Potential implications for inflammation and plaque instability. Circulation 2000;101:1372–1378.

    Google Scholar 

  26. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Cytokine gene expression after myocardial infarction in rat hearts. Possible implication in left ventricular remodeling. Circulation 1998;98:149–156.

    Google Scholar 

  27. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. β-Adrenergic blockade in developing heart failure. Effects of myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 2000;101:2103–2109.

    Google Scholar 

  28. Jougasaki M, Tachibana I, Luchner A, Leskinen H, Redfield MM, Burnett JC. Augmented cardiotrophin-1 in experimental congestive heart failure. Circulation 2000;101:14–17.

    Google Scholar 

  29. Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T. Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 1995;91:1520–1524.

    Google Scholar 

  30. Sano M, Fukuda K, Kodama H, Takahashi T, Kato T, Hakuno D, Sato T, Manabe T, Tahara S, Ogawa S. Autocrine/paracrine secretion of IL-6 family cytokines causes angiotensin II-induced delayed STAT3 activation. Biochem Biophys Res Comm 2000; 269:798–802.

    Google Scholar 

  31. Funamoto M, Hishinuma S, Fujio Y, Matsuda Y, Kunisada K, Oh H, Negoro S, Tone E, Kishimoto T, Yamauchi-Takihara K. Isolation and characterization of the murine cardiotrophin-1 gene. Expression and norepinephrine-induced transcriptional activation. J Mol Cell Cardiol 2000;32:1275–1284.

    Google Scholar 

  32. Kuwahara K, Saito Y, Harada M, Ishikawa M, Ogawa E, Miyamoto Y, Hamanaka I, Kamitani S, Kajiyama N, Takahashi N, Nakagawa O, Masuda I, Nakao K. Involvement of cardiotrophin-1 in cardiac myocyte-nonmyocyte interactions during hypertrophy of rat cardiac myocytes in vitro. Circulation 1999;100:1116–1124.

    Google Scholar 

  33. Sano M, Fukuda K, Kodama H, Pan J, Saito M, Matsuzaki J, Takahashi T, Makino S, Kato T, Ogawa S. Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem 2000; 275:29717–29723.

    Google Scholar 

  34. Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith CW, Michael LH, Entman ML. Cardiac myocytes produce interlukin-6 in culture and in viable border of reperfused infarctions. Circulation 1999;99:546–551.

    Google Scholar 

  35. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704–711.

    Google Scholar 

  36. Wollert K, Drexler H. The renin-angiotensin system and experimental heart failure. Cardiovasc Res 1999;43:838–849.

    Google Scholar 

  37. Bristow MR. β-Adrenergic receptor blockade in chronic heart failure. Circulation 2000;101:558–569.

    Google Scholar 

  38. Gullestad L, Aukrust P, Ueland T, Espevik T, Yee G, Vagelos R, Froland SS, Fowler M. Effect of highversus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 1999;34:2061–2067.

    Google Scholar 

  39. Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, Ohnishi M, Sawaki M, Fujii M, Matsumoto T, Kinoshita M. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 2000;35:714–721.

    Google Scholar 

  40. Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne WC, Knutzon DS, Yen R, Chien KR, Baker JB, Wood WI. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 1995;92:1142–1146.

    Google Scholar 

  41. Pennica D, Shaw KJ, Swanson TA, Moore MW, Shelton DL, Zioncheck KA, Rosenthal A, Taga T, Paoni NF, Wood WI. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J Biol Chem 1995;270:10915–10922.

    Google Scholar 

  42. Wollert KC, Taga T, Saito M, Narazaki M, Kishimoto T, Glembotski CC, Vernallis AB, Health JK, Pennica D, Wood WI, Chien KR. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996;271:9535–9545.

    Google Scholar 

  43. Saito M, Yoshida K, Hibi M, Taga T, Kishimoto T. Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. J Immunol 1992;148:4066–4071.

    Google Scholar 

  44. Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 1995;92:4862–4866.

    Google Scholar 

  45. Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Wirtz S, Schütz M, Bartsch B, Holtmann M, Becker C, Strand D, Czaja J, Schlaak JF, Lehr HA, Autschbach F, Schürmann G, Nishimoto N, Yoshizaki K, Ito H, Kishimoto T, Galle PR, Rose-John S, Neurath MF. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation. Evidence in Crohn disease and experimental colitis in vivo. Nature Med 2000;6:583–588.

    Google Scholar 

  46. Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T. Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 1996;94:2626–2632.

    Google Scholar 

  47. Kodama H, Fukuda K, Pan J, Makino S, Baba A, Hori S, Ogawa S. Leukemia inhibitory factor, a potent cardiac hypertrophic cytokine, activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 1997;81:656–663.

    Google Scholar 

  48. Wollert KC, Chien KR. Cardiotrophin-1 and the role of gp130-dependent signaling pathways in cardiac growth and development. J Mol Med 1997;75:492–501.

    Google Scholar 

  49. Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T. Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 1998;98:346–352.

    Google Scholar 

  50. Nemoto S, Sheng Z, Lin A. Opposing effects of Jun Kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol Cell Biol 1998;18:3518–3526.

    Google Scholar 

  51. Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998;334:297–314.

    Google Scholar 

  52. Fukuzawa J, Booz GW, Hunt RA, Shimizu N, Karoor V, Baker KM, Dostal DE. Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3. An autocrine loop for hypertrophy. Hypertension 2000;35:1191–1196.

    Google Scholar 

  53. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 1999;84:1127–1136.

    Google Scholar 

  54. Ishikawa M, Saito Y, Miyamoto Y, Harada M, Kuwahara K, Ogawa E, Nakagawa O, Hamanaka I, Kajiyama N, Takahashi N, Masuda I, Hashimoto T, Sakai O, Hosoya T, Nakao K. A heart-specific increase in cardiotrophin-1 gene expression precedes the establishment of ventricular hypertrophy in genetically hypertensive rats. J Hypertens 1999; 17:807–816.

    Google Scholar 

  55. Young JB. Angiotensin-converting enzyme inhibitors and cytokines in heart failure. Dose and effect? J Am Coll Cardiol 1999;34:2068–2071.

    Google Scholar 

  56. Hirota H, Chen J, Betz UAK, Rajewsky K, Gu Y, Ross J, Müller W, Chien KR. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999;97:189–198.

    Google Scholar 

  57. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996;226:316–327.

    Google Scholar 

  58. Li Z, Bing OHL, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313-H2319.

    Google Scholar 

  59. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.

    Google Scholar 

  60. Williams RS. Apoptosis and heart failure. N Engl J Med 1999;341:759–760.

    Google Scholar 

  61. Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin-1 inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 1997;272:5783–5791.

    Google Scholar 

  62. Stephanou A, Brar B, Heads R, Knight RD, Marber MS, Pennica D, Latchman DS. Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac myocytes and protects them from stressful stimuli. J Mol Cell Cardiol 1998;30:849–855.

    Google Scholar 

  63. Fujio Y, Kunisada K, Hirota H, Yamauchi-Takihara K, Kishimoto T. Signals through gp130 upregulate bcl-x gene expression via STAT1-binding cis-element in cardiac myocytes. J Clin Invest 1997;99:2898–2905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollert, K.C., Drexler, H. The Role of Interleukin-6 in the Failing Heart . Heart Fail Rev 6, 95–103 (2001). https://doi.org/10.1023/A:1011401825680

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011401825680

Navigation