Skip to main content
Log in

The Role of Hypothalamic H1 Receptor Antagonism in Antipsychotic-Induced Weight Gain

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Treatment with second generation antipsychotics (SGAs), notably olanzapine and clozapine, causes severe obesity side effects. Antagonism of histamine H1 receptors has been identified as a main cause of SGA-induced obesity, but the molecular mechanisms associated with this antagonism in different stages of SGA-induced weight gain remain unclear. This review aims to explore the potential role of hypothalamic histamine H1 receptors in different stages of SGA-induced weight gain/obesity and the molecular pathways related to SGA-induced antagonism of these receptors. Initial data have demonstrated the importance of hypothalamic H1 receptors in both short- and long-term SGA-induced obesity. Blocking hypothalamic H1 receptors by SGAs activates AMP-activated protein kinase (AMPK), a well-known feeding regulator. During short-term treatment, hypothalamic H1 receptor antagonism by SGAs may activate the AMPK—carnitine palmitoyltransferase 1 signaling to rapidly increase caloric intake and result in weight gain. During long-term SGA treatment, hypothalamic H1 receptor antagonism can reduce thermogenesis, possibly by inhibiting the sympathetic outflows to the brainstem rostral raphe pallidus and rostral ventrolateral medulla, therefore decreasing brown adipose tissue thermogenesis. Additionally, blocking of hypothalamic H1 receptors by SGAs may also contribute to fat accumulation by decreasing lipolysis but increasing lipogenesis in white adipose tissue. In summary, antagonism of hypothalamic H1 receptors by SGAs may time-dependently affect the hypothalamus-brainstem circuits to cause weight gain by stimulating appetite and fat accumulation but reducing energy expenditure. The H1 receptor and its downstream signaling molecules could be valuable targets for the design of new compounds for treating SGA-induced weight gain/obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lett TAP, Wallace TJM, Chowdhury NI, et al. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry. 2012;17(3):242–66.

    CAS  PubMed  Google Scholar 

  2. Parsons B, Allison DB, Loebel A, et al. Weight effects associated with antipsychotics: a comprehensive database analysis. Schizophr Res. 2009;110(1–3):103–10.

    PubMed  Google Scholar 

  3. Correll CU, Lencz T, Malhotra AK. Antipsychotic drugs and obesity. Trends Mol Med. 2011;17(2):97–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Rummel-Kluge C, Komossa K, Schwarz S, et al. Head-to-head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: a systematic review and meta-analysis. Schizophr Res. 2010;123(2–3):225–33.

    PubMed Central  PubMed  Google Scholar 

  5. Roerig JL, Steffen KJ, Mitchell JE. Atypical antipsychotic-induced weight gain: insights into mechanisms of action. CNS Drugs. 2011;25(12):1035–59.

    CAS  PubMed  Google Scholar 

  6. Deng C, Weston-Green K, Huang XF. The role of histaminergic H1 and H3 receptors in food intake: a mechanism for atypical antipsychotic-induced weight gain? Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(1):1–4.

    PubMed  Google Scholar 

  7. Nasrallah HA. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatr. 2008;13(1):27–35.

    CAS  Google Scholar 

  8. Matsui-Sakata A, Ohtani H, Sawada Y. Receptor occupancy-based analysis of the contributions of various receptors to antipsychotics-induced weight gain and diabetes mellitus. Drug Metab Pharmacokinet. 2005;20(5):368–78.

    CAS  PubMed  Google Scholar 

  9. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88(3):1183–241.

    CAS  PubMed  Google Scholar 

  10. Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637–72.

    CAS  PubMed  Google Scholar 

  11. Masaki T, Yoshimatsu H. The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol Sci. 2006;27(5):279–84.

    CAS  PubMed  Google Scholar 

  12. Clineschmidt BV, Lotti VJ. Histamine: intraventricular injection suppresses ingestive behavior of the cat. Arch Int Pharmacodyn Ther. 1973;206(2):288–98.

    CAS  PubMed  Google Scholar 

  13. Itowi N, Nagai K, Nakagawa H, et al. Changes in the feeding behavior of rats elicited by histamine infusion. Physiol Behav. 1988;44(2):221–6.

    CAS  PubMed  Google Scholar 

  14. Lecklin A, Etu-Seppala P, Stark H, et al. Effects of intracerebroventricularly infused histamine and selective H-1, H-2 and H-3 agonists on food and water intake and urine flow in Wistar rats. Brain Res. 1998;793(1–2):279–88.

    CAS  PubMed  Google Scholar 

  15. Masaki T, Yoshimatsu H, Chiba S, et al. Central infusion of histamine reduces fat accumulation and upregulates UCP family in leptin-resistant obese mice. Diabetes. 2001;50(2):376–84.

    CAS  PubMed  Google Scholar 

  16. Masaki T, Chiba S, Yoshimichi G, et al. Neuronal histamine regulates food intake, adiposity, and uncoupling protein expression in agouti yellow (A(y)/a) obese mice. Endocrinology. 2003;144(6):2741–8.

    CAS  PubMed  Google Scholar 

  17. Fulop AK, Foldes A, Buzas E, et al. Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology. 2003;144(10):4306–14.

    PubMed  Google Scholar 

  18. Jorgensen EA, Vogelsang TW, Knigge U, et al. Increased susceptibility to diet-induced obesity in histamine-deficient mice. Neuroendocrinology. 2006;83(5–6):289–94.

    CAS  PubMed  Google Scholar 

  19. Masaki T, Chiba S, Yasuda T, et al. Involvement of hypothalamic histamine H-1 receptor in the regulation of feeding rhythm and obesity. Diabetes. 2004;53(9):2250–60.

    CAS  PubMed  Google Scholar 

  20. Chervinsky P, Georgitis J, Banov C, et al. Once daily loratadine versus astemizole once daily. Ann Allergy. 1994;73(2):109–13.

    CAS  PubMed  Google Scholar 

  21. Saleh JW, Yang MU, van Itallie TB, et al. Ingestive behavior and composition of weight change during cyproheptadine administration. Int J Obes. 1979;3(3):213–21.

    CAS  PubMed  Google Scholar 

  22. Silverstone T, Schuyler D. The effect of cyproheptadine on hunger, calorie intake and body weight in man. Psychopharmacologia. 1975;40(4):335–40.

    CAS  PubMed  Google Scholar 

  23. Ratliff JC, Barber JA, Palmese LB, et al. Association of prescription H1 antihistamine use with obesity: results from the National Health and Nutrition Examination Survey. Obesity (Silver Spring). 2010;18(12):2398–400.

    CAS  Google Scholar 

  24. Fukagawa K, Sakata T, Shiraishi T, et al. Neuronal histamine modulates feeding behavior through H1-receptor in rat hypothalamus. Am J Physiol. 1989;256(3 Pt 2):R605–11.

    CAS  PubMed  Google Scholar 

  25. Sakata T, Ookuma K, Fukagawa K, et al. Blockade of the histamine H1-receptor in the rat ventromedial hypothalamus and feeding elicitation. Brain Res. 1988;441(1–2):403–7.

    CAS  PubMed  Google Scholar 

  26. Ookuma K, Yoshimatsu H, Sakata T, et al. Hypothalamic sites of neuronal histamine action on food intake by rats. Brain Res. 1989;490(2):268–75.

    CAS  PubMed  Google Scholar 

  27. Ookuma K, Sakata T, Fukagawa K, et al. Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res. 1993;628(1–2):235–42.

    CAS  PubMed  Google Scholar 

  28. Umehara H, Mizuguchi H, Mizukawa N, et al. Innervation of histamine neurons in the caudal part of the arcuate nucleus of hypothalamus and their activation in response to food deprivation under scheduled feeding. Methods Find Exp Clin Pharmacol. 2010;32(10):733–6.

    CAS  PubMed  Google Scholar 

  29. Umehara H, Mizuguchi H, Mizukawa N, et al. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H1 receptors in rats: Potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus. Brain Res. 2011;1387:61–70.

    CAS  PubMed  Google Scholar 

  30. Gomez-Ramirez J, Ortiz J, Blanco I. Presynaptic H3 autoreceptors modulate histamine synthesis through cAMP pathway. Mol Pharmacol. 2002;61(1):239–45.

    CAS  PubMed  Google Scholar 

  31. Arrang JM, Garbarg M, Schwartz JC. Autoinhibition of histamine synthesis mediated by presynaptic H3-receptors. Neuroscience. 1987;23(1):149–57.

    CAS  PubMed  Google Scholar 

  32. Hancock AA, Brune ME. Assessment of pharmacology and potential anti-obesity properties of H-3 receptor antagonists/inverse agonists. Expert Opin Investig Drugs. 2005;14(3):223–41.

    CAS  PubMed  Google Scholar 

  33. Passani MB, Blandina P, Torrealba F. The histamine H3 receptor and eating behavior. J Pharmacol Exp Ther. 2011;336(1):24–9.

    CAS  PubMed  Google Scholar 

  34. Threlfell S, Cragg SJ, Kallo I, et al. Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J Neurosci. 2004;24(40):8704–10.

    CAS  PubMed  Google Scholar 

  35. Arrang JM, Drutel G, Schwartz JC. Characterization of histamine H3 receptors regulating acetylcholine release in rat entorhinal cortex. Br J Pharmacol. 1995;114(7):1518–22.

    CAS  PubMed  Google Scholar 

  36. Molina-Hernandez A, Nunez A, Arias-Montano JA. Histamine H3-receptor activation inhibits dopamine synthesis in rat striatum. Neuroreport. 2000;11(1):163–6.

    CAS  PubMed  Google Scholar 

  37. Hong ST, Bang S, Paik D, et al. Histamine and its receptors modulate temperature-preference behaviors in Drosophila. J Neurosci. 2006;26(27):7245–56.

    CAS  PubMed  Google Scholar 

  38. Yasuda T, Masaki T, Sakata T, et al. Hypothalamic neuronal histamine regulates sympathetic nerve activity and expression of uncoupling protein 1 mRNA in brown adipose tissue in rats. Neuroscience. 2004;125(3):535–40.

    CAS  PubMed  Google Scholar 

  39. Lundius EG, Sanchez-Alavez M, Ghochani Y, et al. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons. J Neurosci. 2010;30(12):4369–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Morrison SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci. 2011;16:74–104.

    CAS  Google Scholar 

  41. Sethi J, Sanchez-Alavez M, Tabarean IV. Loss of histaminergic modulation of thermoregulation and energy homeostasis in obese mice. Neuroscience. 2012;217:84–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Tabarean IV, Sanchez-Alavez M, Sethi J. Mechanism of H2 histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus. Neuropharmacology. 2012;63(2):171–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Morrison SF, Madden CJ, Tupone D. Central control of brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 2012;3(5).

  44. Chen QH, Toney GM. In vivo discharge properties of hypothalamic paraventricular nucleus neurons with axonal projections to the rostral ventrolateral medulla. J Neurophysiol. 2010;103(1):4–15.

    PubMed  Google Scholar 

  45. Cham JL, Badoer E. Exposure to a hot environment can activate rostral ventrolateral medulla-projecting neurones in the hypothalamic paraventricular nucleus in conscious rats. Exp Physiol. 2008;93(1):64–74.

    PubMed  Google Scholar 

  46. Madden CJ, Morrison SF. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R831–43.

    CAS  PubMed  Google Scholar 

  47. Tsuda K, Yoshimatsu H, Niijima A, et al. Hypothalamic histamine neurons activate lipolysis in rat adipose tissue. Exp Biol Med (Maywood). 2002;227(3):208–13.

    CAS  Google Scholar 

  48. Bugajski J, Janusz Z. Lipolytic responses induced by intracerebroventricular administration of histamine in the rat. Agents Actions. 1981;11(1–2):147–50.

    CAS  PubMed  Google Scholar 

  49. Carpene C, Morin N, Fontana E, et al. Histamine weakly stimulates lipolysis and is poorly oxidized by amine oxidases in human subcutaneous fat cells. Inflamm Res. 2001;50:S140–1.

    CAS  PubMed  Google Scholar 

  50. Wang KY, Tanimoto A, Yamada S, et al. Histamine regulation in glucose and lipid metabolism via histamine receptors: model for nonalcoholic steatohepatitis in mice. Am J Pathol. 2010;177(2):713–23.

    CAS  PubMed  Google Scholar 

  51. Shen J, Tanida M, Yao JF, et al. Biphasic effects of orexin-A on autonomic nerve activity and lipolysis. Neurosci Lett. 2008;444(2):166–71.

    CAS  PubMed  Google Scholar 

  52. Stanley S, Pinto S, Segal J, et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci USA. 2010;107(15):7024–9.

    CAS  PubMed  Google Scholar 

  53. Song CK, Schwartz GJ, Bartness TJ. Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R501–11.

    CAS  PubMed  Google Scholar 

  54. Coccurello R, Moles A. Potential mechanisms of atypical antipsychotic-induced metabolic derangement: clues for understanding obesity and novel drug design. Pharmacol Ther. 2010;127(3):210–51.

    CAS  PubMed  Google Scholar 

  55. Haddad P. Weight change with atypical antipsychotics in the treatment of schizophrenia. J Psychopharmacol. 2005;19(6 Suppl):16–27.

    PubMed  Google Scholar 

  56. Gentile S. Long-term treatment with atypical antipsychotics and the risk of weight gain: a literature analysis. Drug Saf. 2006;29(4):303–19.

    CAS  PubMed  Google Scholar 

  57. Kroeze WK, Hufeisen SJ, Popadak BA, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003;28(3):519–26.

    CAS  PubMed  Google Scholar 

  58. Kim SF, Huang AS, Snowman AM, et al. Antipsychotic drug-induced weight gain mediated by histamine H-1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci USA. 2007;104(9):3456–9.

    CAS  PubMed  Google Scholar 

  59. Vehof J, Risselada AJ, Al Hadithy AFY, et al. Association of genetic variants of the histamine H1 and muscarinic M3 receptors with BMI and HbA1c values in patients on antipsychotic medication. Psychopharmacology (Berl). 2011;216(2):257–65.

    CAS  Google Scholar 

  60. Hong CJ, Lin CH, Yu YW, et al. Genetic variant of the histamine-1 receptor (glu349asp) and body weight change during clozapine treatment. Psychiatr Genet. 2002;12(3):169–71.

    PubMed  Google Scholar 

  61. Basile VS, Masellis M, McIntyre RS, et al. Genetic dissection of atypical antipsychotic-induced weight gain: novel preliminary data on the pharmacogenetic puzzle. J Clin Psychiatry. 2001;62(Suppl 23):45–66.

    CAS  PubMed  Google Scholar 

  62. Han M, Deng C, Burne THJ, et al. Short- and long-term effects of antipsychotic drug treatment on weight gain and H1 receptor expression. Psychoneuroendocrinology. 2008;33(5):569–80.

    CAS  PubMed  Google Scholar 

  63. Kirk SL, Glazebrook J, Grayson B, et al. Olanzapine-induced weight gain in the rat: role of 5-HT2C and histamine H1 receptors. Psychopharmacology (Berl). 2009;207(1):119–25.

    CAS  Google Scholar 

  64. Poyurovsky M, Pashinian A, Levi A, et al. The effect of betahistine, a histamine H1 receptor agonist/H3 antagonist, on olanzapine-induced weight gain in first-episode schizophrenia patients. Int Clin Psychopharmacol. 2005;20(2):101–3.

    PubMed  Google Scholar 

  65. Deng C, Lian J, Pai N, et al. Reducing olanzapine-induced weight gain side-effect by betahistine: a study in the rat model. J Psychopharmacol. 2012;13:2012.

    Google Scholar 

  66. Poyurovsky M, Fuchs C, Pashinian A, et al. Reducing antipsychotic-induced weight gain in schizophrenia: a double-blind placebo-controlled study of reboxetine-betahistine combination. Psychopharmacology (Berl) 2013;226(3):615–22.

    Google Scholar 

  67. Poyurovsky M, Fuchs C, Pashinian A, et al. Attenuating effect of reboxetine on appetite and weight gain in olanzapine-treated schizophrenia patients: a double-blind placebo-controlled study. Psychopharmacology (Berl). 2007;192(3):441–8.

    CAS  Google Scholar 

  68. Lage R, Dieguez C, Vidal-Puig A, et al. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med. 2008;14(12):539–49.

    CAS  PubMed  Google Scholar 

  69. Lim CT, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling. J Mol Endocrinol. 2010;44(2):87–97.

    CAS  PubMed  Google Scholar 

  70. de Morentin PBM, Gonzalez CR, Saha AK, et al. Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev Endocr Metab Disord. 2011;12(3):127–40.

    Google Scholar 

  71. Andersson U, Filipsson K, Abbott CR, et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004;279(13):12005–8.

    CAS  PubMed  Google Scholar 

  72. Kola B. Role of AMP-activated protein kinase in the control of appetite. J Neuroendocrinol. 2008;20(7):942–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kang JA, Lee K, Lee KM, et al. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells. Plos One. 2012;7(4):e36185.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Ronnett GV, Kleman AM, Kim EK, et al. Fatty acid metabolism, the central nervous system, and feeding. Obesity. 2006;14:201–7.

    Google Scholar 

  75. Lane MD, Wolfgang M, Cha SH, et al. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. Int J Obes (Lond). 2008;32(Suppl 4):S49–54.

    CAS  Google Scholar 

  76. Pocai A, Lam TK, Obici S, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116(4):1081–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Obici S, Feng ZH, Arduini A, et al. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med. 2003;9(6):756–61.

    CAS  PubMed  Google Scholar 

  78. Wolfgang MJ, Lane MD. Hypothalamic malonyl-CoA and CPT1c in the treatment of obesity. FEBS J. 2011;278(4):552–8.

    CAS  PubMed  Google Scholar 

  79. Gao S, Zhu GJ, Gao XF, et al. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. Proc Natl Acad Sci USA. 2011;108(23):9691–6.

    CAS  PubMed  Google Scholar 

  80. Wolfgang MJ, Kurama T, Dai Y, et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci USA. 2006;103(19):7282–7.

    CAS  PubMed  Google Scholar 

  81. Sierra AY, Gratacos E, Carrasco P, et al. CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J Biol Chem. 2008;283(11):6878–85.

    CAS  PubMed  Google Scholar 

  82. Lopez M, Lage R, Saha AK, et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 2008;7(5):389–99.

    CAS  PubMed  Google Scholar 

  83. Kohno D, Sone H, Tanaka S, et al. AMP-activated protein kinase activates neuropeptide Y neurons in the hypothalamic arcuate nucleus to increase food intake in rats. Neurosci Lett. 2011;499(3):194–8.

    CAS  PubMed  Google Scholar 

  84. Martins PJ, Haas M, Obici S. Central nervous system delivery of the antipsychotic olanzapine induces hepatic insulin resistance. Diabetes. 2010;59(10):2418–25.

    CAS  PubMed  Google Scholar 

  85. Sejima E, Yamauchi A, Nishioku T, et al. A role for hypothalamic AMP-activated protein kinase in the mediation of hyperphagia and weight gain induced by chronic treatment with olanzapine in female rats. Cell Mol Neurobiol. 2011;31(7):985–9.

    CAS  PubMed  Google Scholar 

  86. Ferno J, Varela L, Skrede S, et al. Olanzapine-induced hyperphagia and weight gain associate with orexigenic hypothalamic neuropeptide signaling without concomitant AMPK phosphorylation. Plos One. 2011;6(6):e20571.

    PubMed Central  PubMed  Google Scholar 

  87. Kim MK, Kim SH, Yu HS, et al. The effect of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex. Int J Neuropsychopharmacol. 2012;15(7):907–17.

    CAS  PubMed  Google Scholar 

  88. Deng C, Weston-Green KL, Han M, et al. Olanzapine treatment decreases the density of muscarinic M2 receptors in the dorsal vagal complex of rats. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(4):915–20.

    CAS  PubMed  Google Scholar 

  89. Weston-Green K, Huang XF, Han M, et al. The effects of antipsychotics on the density of cannabinoid receptors in the dorsal vagal complex of rats: implications for olanzapine-induced weight gain. Int J Neuropsychopharmacol. 2008;11(6):827–35.

    CAS  PubMed  Google Scholar 

  90. Blevins JE, Baskin DG. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 2010;63:133–40.

    CAS  PubMed  Google Scholar 

  91. Schwartz GJ. Integrative capacity of the caudal brainstem in the control of food intake. Philos Trans R Soc Lond B Biol Sci. 2006;361(1471):1275–80.

    CAS  PubMed  Google Scholar 

  92. Watanabe T, Taguchi Y, Shiosaka S, et al. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 1984;295(1):13–25.

    CAS  PubMed  Google Scholar 

  93. Bhuiyan ME, Waki H, Gouraud SS, et al. Histamine receptor H1 in the nucleus tractus solitarii regulates arterial pressure and heart rate in rats. Am J Physiol Heart Circ Physiol. 2011;301(2):H523–9.

    CAS  PubMed  Google Scholar 

  94. Hayes MR, Skibicka KP, Bence KK, et al. Dorsal hindbrain 5’-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance. Endocrinology. 2009;150(5):2175–82.

    CAS  PubMed  Google Scholar 

  95. Pai N, Deng C, Vella S-L, et al. Are there different neural mechanisms responsible for three stages of weight gain development in anti-psychotic therapy: temporally based hypothesis. Asian J Psychiatr. 2012;5(4):315–8.

    PubMed  Google Scholar 

  96. Huang XF, Han M, Huang X, et al. Olanzapine differentially affects 5-HT2Aand2C receptor mRNA expression in the rat brain. Behav Brain Res. 2006;171(2):355–62.

    CAS  PubMed  Google Scholar 

  97. Albaugh VL, Henry CR, Bello NT, et al. Hormonal and metabolic effects of olanzapine and clozapine related to body weight in rodents. Obesity. 2006;14(1):36–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. van der Zwaal EM, Merkestein M, Lam YK, et al. The acute effects of olanzapine on ghrelin secretion, CCK sensitivity, meal size, locomotor activity and body temperature. Int J Obesity. 2012;36(2):254–61.

    Google Scholar 

  99. Stefanidis A, Verty ANA, Allen AM, et al. The role of thermogenesis in antipsychotic drug-induced weight gain. Obesity. 2008;17(1):16–24.

    PubMed  Google Scholar 

  100. Cuerda C, Merchan-Naranjo J, Velasco C, et al. Influence of resting energy expenditure on weight gain in adolescents taking second-generation antipsychotics. Clin Nutr. 2011;30(5):616–23.

    CAS  PubMed  Google Scholar 

  101. Sharpe JK, Byrne NM, Stedman TJ, et al. Resting energy expenditure is lower than predicted in people taking atypical antipsychotic medication. J Am Diet Assoc. 2005;105(4):612–5.

    PubMed  Google Scholar 

  102. Skouroliakou M, Giannopoulou I, Kostara C, et al. Comparison of predictive equations for resting metabolic rate in obese psychiatric patients taking olanzapine. Nutrition. 2009;25(2):188–93.

    PubMed  Google Scholar 

  103. Blessing WW, Zilm A, Ootsuka Y. Clozapine reverses increased brown adipose tissue thermogenesis induced by 3,4-methylenedioxymethamphetamine and by cold exposure in conscious rats. Neuroscience. 2006;141(4):2067–73.

    CAS  PubMed  Google Scholar 

  104. Monda M, Viggiano A, Viggiano E, et al. Quetiapine lowers sympathetic and hyperthermic reactions due to cerebral injection of orexin A. Neuropeptides. 2006;40(5):357–63.

    CAS  PubMed  Google Scholar 

  105. He M, Zhang Q, Wang HQ, et al. Olanzapine treatment and time-dependent changes of hypothalamic AMPK-ACC-CPT1 signalling, food intake and body weight in rats [abstract no.POS-WED-077]. 32nd Australian Neuroscience Society Annual meeting; 2012 Jan 29–Feb 1; Gold Coast.

  106. Seale P, Lazar MA. Brown fat in humans: turning up the heat on obesity. Diabetes. 2009;58(7):1482–4.

    CAS  PubMed  Google Scholar 

  107. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60.

    CAS  PubMed  Google Scholar 

  108. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52.

    CAS  PubMed  Google Scholar 

  109. Whittle AJ, Carobbio S, Martins L, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Lopez M, Varela L, Vazquez MJ, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16(9):1001–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Virtue S, Feldmann H, Christian M, et al. A new role for lipocalin prostaglandin d synthase in the regulation of brown adipose tissue substrate utilization. Diabetes. 2012;61(12):3139–47.

    CAS  PubMed  Google Scholar 

  112. Miller DD. Atypical antipsychotics: sleep, sedation, and efficacy. Prim Care Companion J Clin Psychiatry. 2004;6(Suppl 2):3–7.

    PubMed Central  PubMed  Google Scholar 

  113. Reynolds GP, Kirk SL. Metabolic side effects of antipsychotic drug treatment—pharmacological mechanisms. Pharmacol Ther. 2010;125(1):169–79.

    CAS  PubMed  Google Scholar 

  114. Muench J, Hamer AM. Adverse effects of antipsychotic medications. Am Fam Physician. 2010;81(5):617–22.

    PubMed  Google Scholar 

  115. Nowakowska E, Chodera A, Kus K. Influence of olanzapine on cognitive functions and catalepsy in rats after single and chronic administration. Pol J Pharmacol. 1999;51(4):295–300.

    CAS  PubMed  Google Scholar 

  116. Lenhard JM. Lipogenic enzymes as therapeutic targets for obesity and diabetes. Curr Pharm Des. 2011;17(4):325–31.

    CAS  PubMed  Google Scholar 

  117. Skrede S, Fernø J, Vázquez MJ, et al. Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. Int J Neuropsychopharmacol. 2012;15(02):163–79.

    CAS  PubMed  Google Scholar 

  118. Vestri HS, Maianu L, Moellering DR, et al. Atypical antipsychotic drugs directly impair insulin action in adipocytes: Effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology. 2007;32(4):765–72.

    CAS  PubMed  Google Scholar 

  119. Yang L-H, Chen T-M, Yu S-T, et al. Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells. Pharmacol Res. 2007;56(3):202–8.

    CAS  PubMed  Google Scholar 

  120. Albaugh VL, Judson JG, She P, et al. Olanzapine promotes fat accumulation in male rats by decreasing physical activity, repartitioning energy and increasing adipose tissue lipogenesis while impairing lipolysis. Mol Psychiatry. 2011;16(5):569–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord. 2011;12(3):235–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007;12(1–2):54–61.

    CAS  PubMed  Google Scholar 

  123. Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab. 2004;89(6):2595–600.

    CAS  PubMed  Google Scholar 

  124. Després J-P. Abdominal obesity: the most prevalent cause of the metabolic syndrome and related cardiometabolic risk. Eur Heart J Suppl. 2006;8(suppl B):B4–12.

    Google Scholar 

  125. De Hert M, Cohen D, Bobes J, et al. Physical illness in patients with severe mental disorders. II. Barriers to care, monitoring and treatment guidelines, plus recommendations at the system and individual level. World Psychiatry. 2011;10(2):138–51.

    PubMed  Google Scholar 

  126. De Hert M, Detraux J, van Winkel R, et al. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat Rev Endocrinol. 2012;8(2):114–26.

    Google Scholar 

  127. De Hert M, Vancampfort D, Correll CU, et al. Guidelines for screening and monitoring of cardiometabolic risk in schizophrenia: systematic evaluation. Br J Psychiatry. 2011;199(2):99–105.

    PubMed  Google Scholar 

  128. Gothefors D, Adolfsson R, Attvall S, et al. Swedish clinical guidelines—prevention and management of metabolic risk in patients with severe psychiatric disorders. Nord J Psychiatry. 2010;64(5):294–302.

    PubMed  Google Scholar 

  129. De Hert M, Dekker JM, Wood D, et al. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur Psychiatry. 2009;24(6):412–24.

    PubMed  Google Scholar 

  130. Hasnain M, Vieweg WV, Fredrickson SK, et al. Clinical monitoring and management of the metabolic syndrome in patients receiving atypical antipsychotic medications. Prim Care Diabetes. 2009;3(1):5–15.

    PubMed  Google Scholar 

  131. Cooper GD, Harrold JA, Halford JCG, et al. Chronic clozapine treatment in female rats does not induce weight gain or metabolic abnormalities but enhances adiposity: Implications for animal models of antipsychotic-induced weight gain. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):428–36.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study is supported by an Australian National Health and Medical Research Council (NHMRC) grant to Xu-Feng Huang and Chao Deng (ID 635231). Meng He is supported by the China Scholarship Council—University of Wollongong Joint Postgraduate Scholarship. Prof. Huang, Ms. He and A/Prof. Deng have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Feng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Deng, C. & Huang, XF. The Role of Hypothalamic H1 Receptor Antagonism in Antipsychotic-Induced Weight Gain. CNS Drugs 27, 423–434 (2013). https://doi.org/10.1007/s40263-013-0062-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-013-0062-1

Keywords

Navigation