Skip to main content
Log in

Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

It is well established that ATP is co-secreted with insulin and zinc from pancreatic beta-cells (β-cells) in response to elevations in extracellular glucose concentration. Despite this knowledge, the physiological roles of extracellular secreted ATP and zinc are ill-defined. We hypothesized that secreted ATP and zinc are autocrine purinergic signaling molecules that activate P2X purinergic receptor (P2XR) channels expressed by β-cells to enhance glucose-stimulated insulin secretion (GSIS). To test this postulate, we performed ELISA assays for secreted insulin at fixed time points within a “real-time” assay and confirmed that the physiological insulin secretagogue glucose stimulates secretion of ATP and zinc into the extracellular milieu along with insulin from primary rat islets. Exogenous ATP and zinc alone or together also induced insulin secretion in this model system. Most importantly, the presence of an extracellular ATP scavenger, a zinc chelator, and P2 receptor antagonists attenuated GSIS. Furthermore, mRNA and protein were expressed in immortalized β-cells and primary islets for a unique subset of P2XR channel subtypes, P2X2, P2X3, P2X4, and P2X6, which are each gated by extracellular ATP and modulated positively by extracellular zinc. On the basis of these results, we propose that, within endocrine pancreatic islets, secreted ATP and zinc have profound autocrine regulatory influence on insulin secretion via ATP-gated and zinc-modulated P2XR channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATP:

Adenosine 5′ triphosphate

ADP:

Adenosine 5′ diphosphate

AMP:

Adenosine 5′ monophosphate

β-cells:

Beta-cells

Ca2+ :

Calcium

[Ca2+]i :

Intracellular calcium concentration

DTPA:

Diethylene triamine pentaacetic acid

HBSS:

HEPES balanced salt solution

Islets:

Islet of Langerhans

K+ ATP channel:

Sulphonylurea receptor (SUR) and KIR 6.2 channel complex

P2XR:

P2X purinergic receptor channels

P2YR:

P2Y purinergic G protein-coupled receptors

PPADS:

Pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate

VDCCs:

Voltage-activated calcium channels

References

  1. Foster DW, McGarry JD (2000) Glucose, lipid and protein metabolism. Griffin JE, Ojeda SR (eds) Textbook of endocrine physiology, 4th edn. Oxford University Press, New York, pp 393–420

  2. Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18:451–463

    Article  PubMed  CAS  Google Scholar 

  3. Straub SG, Sharp GW (2004) Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am J Physiol Cell Physiol 287:C565–C571

    Article  PubMed  CAS  Google Scholar 

  4. Newgard CB, McGarry JD (1995) Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem 64:689–719

    Article  PubMed  CAS  Google Scholar 

  5. Bryan J, Crane A, Vila-Carriles WH, Babenko AP, Aguilar-Bryan L (2005) Insulin secretagogues, sulfonylurea receptors, and K(ATP) channels. Curr Pharm Des 11(21):2699–2676

    Article  PubMed  CAS  Google Scholar 

  6. Aponte G, Gross D, Yamada T (1985) Capillary orientation of rat pancreatic D-cell processes: evidence for endocrine release of somatostatin. Am J Physiol 249:G599–G606

    PubMed  CAS  Google Scholar 

  7. Ballian N, Brunicardi FC (2007) Islet vasculature as a regulator of endocrine pancreas function. World J Surg 31:705–714

    Article  PubMed  Google Scholar 

  8. Bertrand G, Chapal J, Loubatieres-Mariani MM, Roye M (1987) Evidence for two different P2-purinoceptors on beta cell and pancreatic vascular bed. Br J Pharmacol 91:783–787

    PubMed  CAS  Google Scholar 

  9. Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J, Schermerhorn T, Straub SG, Yajima H, Sharp GW (2002) Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 51(Suppl 1):S83–S90

    Article  PubMed  CAS  Google Scholar 

  10. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337

    Article  PubMed  CAS  Google Scholar 

  11. Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van LL, Grunwald D, Favier A, Seve M (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206

    Article  PubMed  CAS  Google Scholar 

  12. Chimienti F, Favier A, Seve M (2005) ZnT-8, a pancreatic beta-cell-specific zinc transporter. Biometals 18:313–317

    Article  PubMed  CAS  Google Scholar 

  13. Zalewski PD, Millard SH, Forbes IJ, Kapaniris O, Slavotinek A, Betts WH, Ward AD, Lincoln SF, Mahadevan I (1994) Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cytochem 42:877–884

    PubMed  CAS  Google Scholar 

  14. Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437:31–35

    Article  PubMed  CAS  Google Scholar 

  15. Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282

    Article  PubMed  CAS  Google Scholar 

  16. Hellman B, Dansk H, Grapengiesser E (2004) Pancreatic beta-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286:E759–E765

    Article  PubMed  CAS  Google Scholar 

  17. Leitner JW, Sussman KE, Vatter AE, Schneider FH (1975) Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinology 96:662–677

    PubMed  CAS  Google Scholar 

  18. Grapengiesser E, Dansk H, Hellman B (2004) Pulses of external ATP aid to the synchronization of pancreatic beta-cells by generating premature Ca(2+) oscillations. Biochem Pharmacol 68:667–674

    Article  PubMed  CAS  Google Scholar 

  19. Leitner JW, Sussman KE, Vatter AE, Schneider FH (1975) Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinology 96:662–677

    PubMed  CAS  Google Scholar 

  20. Qian WJ, Gee KR, Kennedy RT (2003) Imaging of Zn2+ release from pancreatic beta-cells at the level of single exocytotic events. Anal Chem 75:3468–3475

    Article  PubMed  CAS  Google Scholar 

  21. Qian WJ, Peters JL, Dahlgren GM, Gee KR, Kennedy RT (2004) Simultaneous monitoring of Zn2+ secretion and intracellular Ca2+ from islets and islet cells by fluorescence microscopy. Biotechniques 37:922–930

    PubMed  CAS  Google Scholar 

  22. Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32

    Article  PubMed  CAS  Google Scholar 

  23. Schwiebert EM, Liang L, Cheng NL, Olteanu D, Richards-Williams C, Welty EA, Zsembery A (2005) Extracellular ATP- and zinc-gated P2X receptor calcium entry channels: physiological sensors and therapeutic targets. Purinergic Signal 1(4):299–310

    Article  PubMed  CAS  Google Scholar 

  24. Novak I (2007) Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal. doi:10.1007/s11302-007-9087-6

  25. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  PubMed  CAS  Google Scholar 

  26. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  27. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  28. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Catterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452:486–500

    Article  PubMed  CAS  Google Scholar 

  29. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  PubMed  CAS  Google Scholar 

  30. Novak I, Hede SE, Hansen MR (2008) Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport. Pflugers Arch 456:437–447

    Article  PubMed  CAS  Google Scholar 

  31. Tuduri E, Filiputti E, Carneiro E, Quesada I (2008) Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic {alpha}-cells by extracellular ATP and purinergic receptors. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00641.2007

  32. Bertrand G, Chapal J, Loubatieres-Mariani MM, Roye M (1987) Evidence for two different P2-purinoceptors on beta cell and pancreatic vascular bed. Br J Pharmacol 91:783–787

    PubMed  CAS  Google Scholar 

  33. Verspohl EJ, Johannwille B, Waheed A, Neye H (2002) Effect of purinergic agonists and antagonists on insulin secretion from INS-1 cells (insulinoma cell line) and rat pancreatic islets. Can J Physiol Pharmacol 80:562–568

    Article  PubMed  CAS  Google Scholar 

  34. Petit P, Hillaire-Buys D, Manteghetti M, Debrus S, Chapal J, Loubatieres-Mariani MM (1998) Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell. Br J Pharmacol 125:1368–1374

    Article  PubMed  CAS  Google Scholar 

  35. Petit P, Manteghetti M, Puech R, Loubatieres-Mariani MM (1987) ATP and phosphate-modified adenine nucleotide analogues. Effects on insulin secretion and calcium uptake. Biochem Pharmacol 36:377–380

    Article  PubMed  CAS  Google Scholar 

  36. Chapal J, Loubatieres-Mariani MM, Roye M (1981) Effect of adenosine and phosphated derivatives on insulin release from the newborn dog pancreas. J Physiol (Paris) 77:873–875

    CAS  Google Scholar 

  37. Fernandez-Alvarez L, Hillaire-Buys D, Loubatieres-Mariani MM, Gomis R, Petit P (2001) P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22:69–71

    Article  PubMed  CAS  Google Scholar 

  38. Farret A, Vignaud M, Dietz S, Vignon J, Petit P, Gross R (2004) P2Y purinergic potentiation of glucose-induced insulin secretion and pancreatic beta-cell metabolism. Diabetes 53(Suppl 3):S63–S66

    Article  PubMed  CAS  Google Scholar 

  39. Coutinho-Silva R, Parsons M, Robson T, Burnstock G (2001) Changes in expression of P2 receptors in rat and mouse pancreas during development and ageing. Cell Tissue Res 306:373–383

    Article  PubMed  CAS  Google Scholar 

  40. Coutinho-Silva R, Parsons M, Robson T, Lincoln J, Burnstock G (2003) P2X and P2Y purinoceptor expression in pancreas from streptozotocin-diabetic rats. Mol Cell Endocrinol 204:141–154

    Article  PubMed  CAS  Google Scholar 

  41. Liang L, Schwiebert EM (2005) Large pore formation uniquely associated with P2X7 purinergic receptor channels. Am J Physiol Cell Physiol 288(2):C240–C242

    Article  PubMed  CAS  Google Scholar 

  42. Coddou C, Morales B, Huidobro-Toro JP (2003) Neuromodulator role of zinc and copper during prolonged ATP applications to P2X4 purinoceptors. Eur J Pharmacol 472:49–56

    Article  PubMed  CAS  Google Scholar 

  43. Cuna-Castillo C, Morales B, Huidobro-Toro JP (2000) Zinc and copper modulate differentially the P2X4 receptor. J Neurochem 74:1529–1537

    Article  Google Scholar 

  44. Xiong K, Peoples RW, Montgomery JP, Chiang Y, Stewart RR, Weight FF, Li C (1999) Differential modulation by copper and zinc of P2X2 and P2X4 receptor function. J Neurophysiol 81:2088–2094

    PubMed  CAS  Google Scholar 

  45. Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49:424–430

    Article  PubMed  CAS  Google Scholar 

  46. D’Ambra R, Surana M, Efrat S, Starr RG, Fleischer N (1990) Regulation of insulin secretion from beta-cell lines derived from transgenic mice insulinomas resembles that of normal beta-cells. Endocrinology 126:2815–2822

    Article  PubMed  CAS  Google Scholar 

  47. Eckhoff DE, Eckstein C, Smyth CA, Vilatoba M, Bilbao G, Rahemtulla FG, Young CJ, Thompson J, Chaudry IH, Contreras JL (2004) Enhanced isolated pancreatic islet recovery and functionality in rats by 17beta-estradiol treatment of brain death donors. Surgery 136:336–345

    Article  PubMed  Google Scholar 

  48. Taylor AL, Kudlow BA, Marrs KL, Gruenert DC, Guggino WB, Schwiebert EM (1998) Bioluminescence detection of ATP release mechanisms in epithelia. Am J Physiol 275:C1391–C1406

    PubMed  CAS  Google Scholar 

  49. Taylor AL, Schwiebert LM, Smith JJ, King C, Jones JR, Sorscher EJ, Schwiebert EM (1999) Epithelial P2X purinergic receptor channel expression and function. J Clin Invest 104:875–884

    Article  PubMed  CAS  Google Scholar 

  50. Liang L, Zsembery A, Schwiebert EM (2005) RNA interference targeted to multiple P2X receptor subtypes attenuates zinc-induced calcium entry. Am J Physiol Cell Physiol 289:C388–C396

    Article  PubMed  CAS  Google Scholar 

  51. Schwiebert EM, Wallace DP, Braunstein GM, King SR, Peti-Peterdi J, Hanaoka K, Guggino WB, Guay-Woodford LM, Bell PD, Sullivan LP, Grantham JJ, Taylor AL (2002) Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys. Am J Physiol Renal Physiol 282:F763–F775

    PubMed  CAS  Google Scholar 

  52. Schwiebert LM, Rice WC, Kudlow BA, Taylor AL, Schwiebert EM (2002) Extracellular ATP signaling and P2X nucleotide receptors in monolayers of primary human vascular endothelial cells. Am J Physiol Cell Physiol 282:C289–C301

    PubMed  CAS  Google Scholar 

  53. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  PubMed  CAS  Google Scholar 

  54. da Silva RL, Resende RR, Ulrich H (2007) Alternative splicing of P2X6 receptors in developing mouse brain and during in vitro neuronal differentiation. Exp Physiol 92:139–145

    Article  PubMed  CAS  Google Scholar 

  55. Dhulipala PD, Wang YX, Kotlikoff MI (1998) The human P2X4 receptor gene is alternatively spliced. Gene 207:259–266

    Article  PubMed  CAS  Google Scholar 

  56. Le KT, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418:195–199

    Article  PubMed  CAS  Google Scholar 

  57. Ohkubo T, Yamazaki J, Nakashima Y, Kitamura K (2000) Presence and possible role of the spliced isoform of the P2X1 receptor in rat vascular smooth muscle cells. Pflugers Arch 441:57–64

    Article  PubMed  CAS  Google Scholar 

  58. Simon J, Kidd EJ, Smith FM, Chessell IP, Murrell-Lagnado R, Humphrey PP, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52:237–248

    PubMed  CAS  Google Scholar 

  59. Worthington RA, Dutton JL, Poronnik P, Bennett MR, Barden JA (1999) Localisation of P2X receptors in human salivary gland epithelial cells and human embryonic kidney cells by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/Western blotting and immunofluorescence. Electrophoresis 20:2065–2070

    Article  PubMed  CAS  Google Scholar 

  60. Stojilkovic SS, Tomic M, He ML, Yan Z, Koshimizu TA, Zemkova H (2005) Molecular dissection of purinergic P2X receptor channels. Ann NY Acad Sci 1048:116–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding support of the Juvenile Diabetes Research Foundation (Innovation Grant 5-2007-262 to E.M.S.) and grants of our islet isolation collaborator, Dr. Juan Contreras, M.D. Dr. Contreras is director of the Southern Tissue Center, a funded provider of islets for the southeastern U/S. We thank Cheryl A. Smyth, MS, and Stacie Jenkins-Bryant, BA, colleagues of Dr. Contreras, who were very generous with their time, efforts, and education with regard to islet isolation. Dr. Contreras’s entire group was very generous with time and resources for this study. We also thank Dr. Susan Bellis, Ph.D., and Kristin Hennessy for assistance with and use of the fluorescence microscope. We thank Nai-Lin Cheng for help with molecular biology and biochemistry. We thank Dr. Lydia Aguilar-Bryan for tireless encouragement for entering the field of islet cell biology and diabetes. C.R.W. is supported by an NRSA Predoctoral Fellowship (5 F31 GM078758-02). We acknowledge previous support from the American Physiological Society (APS) in the form of an APS Porter Fellowship. C.R.W. is also currently a Fellow for the APS NIDDK K-12 Minority Outreach Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik M. Schwiebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards-Williams, C., Contreras, J.L., Berecek, K.H. et al. Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion. Purinergic Signalling 4, 393–405 (2008). https://doi.org/10.1007/s11302-008-9126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-008-9126-y

Keywords

Navigation