Skip to main content
Log in

Association between local interleukin-6 levels and slow flow/microvascular dysfunction

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

We aimed to investigate the association between local interleukin-6 (IL-6) levels at the infarct-related artery and the risk of slow flow/microvascular dysfunction after PCI in ST-elevation acute myocardial infarction (AMI) patients treated by successful primary PCI. 56 eligible ST-elevation AMI patients (34 male/22 female, mean age: 63.5 ± 10.3 years), undergoing successful primary PCI, were included in the current study. Blood samples were obtained from the extraction catheter placed distal to the lesion before PCI. Plasma IL-6 levels were determined by immunoassay method. Slow flow/microvascular dysfunction was observed in 21 patients (37.5 %). Using multiple logistic regression analysis, local IL-6 levels (OR 1.592, CI 1.135–2.268; P = 0.007) were found to be a significant risk factor of slow flow/microvascular dysfunction together with diabetes mellitus (OR = 8.065, CI 1.244–52.632; P = 0.029) and thrombus score (OR = 12.500, CI 1.100–142.857; P = 0.042). Receiver operating characteristic (ROC) curve analysis revealed that local IL-6 (ROC area 0.824, OR 1.704, CI 1.274–2.281, P < 0.001; optimal threshold ≥11.3 pg/ml) had a predictive value of slow flow/microvascular dysfunction with sensitivity of 73 % and specificity of 71 %. Our study indicated that inflammatory response as presented by local IL-6 levels was associated with slow flow/microvascular dysfunction in patients with ST-elevation AMI after successful primary PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rezkalla SH, Kloner RA (2008) Coronary no-reflow phenomenon: from the experimental laboratory to the cardiac catheterization laboratory. Catheter Cardiovasc Interv 72:950–957

    Article  PubMed  Google Scholar 

  2. Tanriverdi H, Evrengul H, Kilic ID, Taskoylu O, Dogan G et al (2010) Aortic pressures, stiffness and left ventricular function in coronary slow flow phenomenon. Cardiology 116:261–267

    Article  PubMed  Google Scholar 

  3. Morishima I, Sone T, Okumura K, Tsuboi H, Kondo J et al (2000) Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol 36:1202–1209

    Article  CAS  PubMed  Google Scholar 

  4. Resnic FS, Wainstein M, Lee MK, Behrendt D, Wainstein RV et al (2003) No-reflow is an independent predictor of death and myocardial infarction after percutaneous coronary intervention. Am Heart J 145:42–46

    Article  PubMed  Google Scholar 

  5. Cheng L, Wang J, Li X, Xing Q, Du P (2011) Interleukin-6 induces Gr-1+CD11b+ myeloid cells to suppress CD8+T cell-mediated liver injury in mice. PLoS One 4;6(3):17631

    Article  Google Scholar 

  6. Pedroza M, Schneider DJ, Karmouty-Quintana H, Coote J, Shaw S et al (2011) Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PLoS One 6(7):e22667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M et al (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101:311–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kefer JM, Galanti LM, Hanet CE (2004) Time course of transcardiac interleukin-6 release after coronary stenting for stable angina. Heart 90:943–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Liuzzo G, Buffon A, Biasucci LM, Gallimore JR, Caligiuri G et al (1998) Enhanced inflammatory response to coronary angioplasty in patients with severe unstable angina. Circulation 98:2370–2376

    Article  CAS  PubMed  Google Scholar 

  10. Biasucci LM, Liuzzo G, Fantuzzi G, Caligiuri G, Rebuzzi AG et al (1999) Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation 99:2079–2084

    Article  CAS  PubMed  Google Scholar 

  11. Szkodzinski J, Blazelonis A, Wilczek K, Hudzik B, Romanowski W et al (2009) The role of interleukin-6 and transforming growth factor-beta1 in predicting restenosis within stented infarct-related artery. Int J Immunopathol Pharmacol 22:493–500

    CAS  PubMed  Google Scholar 

  12. Funayama H, Ishikawa SE, Kubo N, Yasu T, Saito M et al (2006) Close association of regional interleukin-6 levels in the infarct-related culprit coronary artery with restenosis in acute myocardial infarction. Circ J 70:426–429

    Article  CAS  PubMed  Google Scholar 

  13. Biasucci LM, Vitelli A, Liuzzo G, Altamura S, Caligiuri G et al (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94:874–877

    Article  CAS  PubMed  Google Scholar 

  14. de Boer MJ, Reiber JHC, Suryapranata H, van den Brand MJBM, Hoorntje JCA et al (1995) Angiographic findings and catheterisation lab-oratory events in patients with primary coronary angioplasty or strep-tokinase therapy for acute myocardial infarction. Eur Heart J 16:1347–1356

    PubMed  Google Scholar 

  15. Gibson CM, Murphy SA, Rizzo MJ, Ryan KA, Marble SJ et al (1999) Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis in myocardial infarction (TIMI) study group. Circulation 99:1945–1950

    Article  CAS  PubMed  Google Scholar 

  16. van’t Hof AW, Liem A, Suryapranata H et al (1998) Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle myocardial infarction study group. Circulation 97:2302–2306

    Article  Google Scholar 

  17. Gibson CM, Murphy SA, Morrow DA, Aroesty JM, Gibbons RJ et al (2004) Angiographic perfusion score: an angiographic variable that integrates both epicardial and tissue level perfusion before and after facilitated percutaneous coronary intervention in acute myocardial infarction. Am Heart J 148:336–340

    Article  PubMed  Google Scholar 

  18. Turhan H, Saydam GS, Erbay AR, Ayaz S, Yasar AS et al (2006) Increased plasma soluble adhesion molecules: iCAM-1, VCAM-1, and E-selectin concentrations in patients with slow coronary flow. Int J Cardiol 108:224–230

    Article  PubMed  Google Scholar 

  19. Li JJ, Qin XW, Li ZC, Zeng HS, Gao Z et al (2007) Increased plasma C-reactive protein and interleukin-6 concentrations in patients with slow coronary flow. Clin Chim Acta 385:43–47

    Article  CAS  PubMed  Google Scholar 

  20. Ikeda U, Ikeda M, Seino Y, Takahashi M, Kano S et al (1992) Interleukin-6 gene transcripts are expressed in atherosclerotic lesions of genetically hyperlipidemic rabbits. Atherosclerosis 92:213–218

    Article  CAS  PubMed  Google Scholar 

  21. Clinton SK, Fleet JC, Loppnow H, Salomon RN, Clark BD et al (1991) Interleukin-1 gene expression in rabbit vascular tissue in vivo. Am J Pathol 138:1005–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kotani J, Nanto S, Kitakaze M, Ohara T, Morozumi T et al (2002) No-reflow following dilatation of a coronary lesion with a large lipid core. Circ J 66:702–704

    Article  PubMed  Google Scholar 

  23. Engler RL, Schmid-schonbein GW, Pavelec RS (1983) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111:98–111

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Meisel SR, Shapiro H, Radnay J, Neuman Y, Khaskia AR et al (1998) Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and Mac-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction: possible implications for leukocyte aggregation and microvascular plugging. J Am Coll Cardiol 31:120–125

    Article  CAS  PubMed  Google Scholar 

  25. Piana RN, Paik GY, Moscucci M, Cohen DJ, Gibson CM et al (1994) Incidence and treatment of ‘no-reflow’ after percutaneous coronary intervention. Circulation 89:2514–2518

    Article  CAS  PubMed  Google Scholar 

  26. Taniyama Y, Ito H, Iwakura K, Masuyama T, Hori M et al (1997) Beneficial effect of intracoronary verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. J Am Coll Cardiol 30:1193–1199

    Article  CAS  PubMed  Google Scholar 

  27. Kloner RA, Przylenk K, Wittaker P (1989) Deleterious effect of oxygen radicals in ischemic/reperfusion: resolved and unsolved issues. Circulation 80:1115–1127

    Article  CAS  PubMed  Google Scholar 

  28. Grech ED, Dodd NJ, Jackson MJ, Morrison WL, Faragher EB et al (1996) Evidence for free radical generation after primary percutaneous transluminal coronary angioplasty recanalization in acute myocardial infarction. Am J Cardiol 77:122–127

    Article  CAS  PubMed  Google Scholar 

  29. Reffelmann T, Kloner RA (2002) The “no-reflow” phenomenon: basic science and clinical correlates. Heart 87:162–168

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dreyer WJ, Michael LH, West MS, Smith CW, Rothlein R et al (1991) Neutrophil accumulation in ischemic canine myocardium: insights into time course, distribution, and mechanism of localization during early reperfusion. Circulation 84:400–411

    Article  CAS  PubMed  Google Scholar 

  31. Ørn S, Manhenke C, Ueland T, Damås JK, Mollnes TE et al (2009) C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction. Eur Heart J 30:1180–1186

    Article  PubMed  Google Scholar 

  32. Geisler T, Mueller K, Aichele S, Bigalke B, Stellos K et al (2010) Impact of inflammatory state and metabolic control on responsiveness to dual antiplatelet therapy in type 2 diabetics after PCI: prognostic relevance of residual platelet aggregability in diabetics undergoing coronary interventions. Clin Res Cardiol 99:743–752

    Article  PubMed  Google Scholar 

  33. Larsen SB, Grove EL, Kristensen SD, Hvas AM (2013) Reduced antiplatelet effect of aspirin is associated with low-grade inflammation in patients with coronary arterydisease. Thromb Haemost 109:920–929

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Guangping Li.

Additional information

Fangming Guo and Mei Dong contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Dong, M., Ren, F. et al. Association between local interleukin-6 levels and slow flow/microvascular dysfunction. J Thromb Thrombolysis 37, 475–482 (2014). https://doi.org/10.1007/s11239-013-0974-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-0974-0

Keywords

Navigation