Skip to main content

Advertisement

Log in

Mechanisms of renal ammonia production and protein turnover

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Renal synthesis and excretion of ammonia are critical for efficient removal of acids from the body. Besides the rate of ammonia production, the intrarenal distribution of produced ammonia is a crucial step in the renal regulation of acid-base balance. Various acid-base disorders are associated not only with changes in ammonia production but also with its distribution between the urine and the renal veins. The final effect of ammonia production on acid-base balance largely depends on the events that determine the distribution of ammonia produced between urine and blood. Several factors, among which urine pH, urine flow, total ammonia production “per se” and renal blood flow may affect the percent of ammonia excreted into urines in humans with different acid-base disturbances. Among these factors, urine pH is the most important. An additional effect of stimulated ammoniagenesis is kidney hypertrophy. In tubule epithelial cells, the associated increase in ammonia production, rather than the acidosis per se, is responsible for favoring tubular hypertrophy. This effect is related to the inhibition of protein degradation, owing to changes in lysosomal pH and cathepsin activity, without effects on cell cycle. Both changes of PI-3 kinase pathway and the suppression of chaperone-mediated autophagy are candidate mechanism for ammonia-mediated inhibition of protein degradation in tubule cells. Available data in humans indicate that the response of kidney to metabolic acidosis includes both changes in amino acid uptake and suppression of protein degradation. The latter effect is associated woth the increase in ammonia excretion and partition into the urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal A, Nath KA (1993) Effect of proteinuria on renal interstitium: effect of products of nitrogen metabolism. Am J Nephrol 13:376–84

    Article  PubMed  CAS  Google Scholar 

  • Alpern RJ (1995) Trade-offs in the adaptation to acidosis. Kidney Int 47:1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Andratsch M, Feifel E, Taylor L et al (2007) TGF-beta signaling and its effect on glutaminase expression in LLC-PK1-FBPase+ cells. Am J Physiol Renal Physiol 293:F846–53

    Article  PubMed  CAS  Google Scholar 

  • Ballmer PE, McNurlan MA, Hulter HN et al (1995) Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in healthy volunteers. J Clin Invest 95:39–45

    Article  PubMed  CAS  Google Scholar 

  • Chambrey R, Goossens D, Bourgeois S et al (2005) Genetic ablation of RhBg in the mouse does not impair renal ammonium excretion. Am J Physiol Renal Physiol 289:F1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Cheval L, Morla L, Elalouf JM et al (2006) Kidney collecting duct acid-base ‘regulon’. Physiol Genom 27:271–281

    Article  CAS  Google Scholar 

  • Curthoys NP, Gstraunthaler G (2001) Mechanism of increased renal gene expression during metabolic acidosis. Am J Renal Physiol 281:F381–F390

    CAS  Google Scholar 

  • Curthoys NP, Tay Velic A, lor L et al (2007) Proteomic analysis of the adaptive response of rat renal proximal tubules to metabolic acidosis. Am J Physiol Renal Physiol 292:F140–F147

    Article  PubMed  CAS  Google Scholar 

  • Eladari D, Cheval L, Quentin F et al (2002) Expression of RhCG, a new putative NH3/NH4 + transporter, along the rat nephron. J Am Soc Nephrol 13:1999–2008

    Article  PubMed  CAS  Google Scholar 

  • Franch HA (2000) Modification of the Epidermal Growth Factor Response by Ammonia in Renal Cell Hypertrophy. J Am Soc Nephrol 11:1631–1638

    PubMed  CAS  Google Scholar 

  • Franch HA Preisig PA (1996) NH4Cl induced hypertrophy is mediated by weak base effects and is independent of cell cycle processes. Am J Physiol 270:C932–C938

    Google Scholar 

  • Franch HA, Shay JW, Alpern RJ et al (1995) Involvement of pRB family in TGFß-dependent epithelial cell hypertrophy. J Cell Biol 129:245–254

    Article  PubMed  CAS  Google Scholar 

  • Garibotto G, Tessari P, Zanetti M et al (1997) Protein turnover in the human kidney. In: Tessari P (ed) Amino acid and protein metabolism in health and disease: Nutritional implications. Smiths-Gordon, London, pp 45–49

    Google Scholar 

  • Garibotto G, Tessari P, Sacco P et al (1999) Amino acid metabolism, substrate availability and the control of protein dynamics in the human kidney. J Nephrol 12:203–211

    PubMed  CAS  Google Scholar 

  • Garibotto G, Sofia A, Saffioti S et al (2004) Kidney protein dynamics and ammoniagenesis in humans with chronic metabolic acidosis. J Am Soc Nephrol 15:1606–1615

    Article  PubMed  CAS  Google Scholar 

  • Golchini K, Bohman NR, Kurtz I (1989) Induction of hypertrophy in cultured proximal tubule cells by extracellular NH4Cl. J Clin Invest 84:1767–1779

    Article  PubMed  CAS  Google Scholar 

  • Griffin SV, Shankland SJ (2008) Renal hyperplasia and hypertrophy In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s The Kidney Physiology, and Pathophysiology, Vol 1 Academic Press, pp 723–742

  • Han KH, Croker BP, Clapp WL et al (2006) Expression of the Ammonia Transporter, Rh C Glycoprotein, in Normal and Neoplastic Human Kidney. J Am Soc Nephrol 17:2670–2679

    Article  PubMed  CAS  Google Scholar 

  • Horie S, Moe O, Tejedor A et al (1990) Preincubation in acid medium increases Na/H antiporter activity in cultured renal proximal tubule cells. Proc Natl Acad Sci USA 87:4742–4745

    Article  PubMed  CAS  Google Scholar 

  • Hostetter TH (1995) Progression of renal disease and renal hypertrophy. Annu Rev Physiol 57:263–278

    Article  PubMed  CAS  Google Scholar 

  • Jurkovitz CT, England BK, Ebb RG et al (1992) Influence of ammonia and pH on protein and amino acid metabolism in LLC-PK1 cells Kidney. Int 42:595–601

    CAS  Google Scholar 

  • Kim HY, Baylis C, Verlander JW et al (2007) Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression. Am J Physiol Renal Physiol 293:F1238–1247

    Article  PubMed  CAS  Google Scholar 

  • Ling H, Vamvakas S, Gekle M et al (1996) Role of lysosomal cathepsin activities in cell hypertrophy induced by NH4Cl in cultured renal proximal tubule cells. J Am Soc Nephr 7:73–80

    CAS  Google Scholar 

  • Marini AM, Matassi G, Raynal V et al (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26:341–344

    Article  PubMed  CAS  Google Scholar 

  • Moret C, Dave MH, Schulz N et al (2007) Regulation of renal amino acid transporters during metabolic acidosis. Am J Physiol Renal Physiol 292:F555–566

    Article  PubMed  CAS  Google Scholar 

  • Nagami GT (2000) Renal ammonia production and excretion. In: Seldin D, Giebisch G (ed.) The Kidney. Physiology and Pathophysiology, 3rd edn. Lippincott, Williams & Wilkins, pp 1995–2013

  • Nowik M, Lecca RM, Rehrauer WM et al (2008) Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 32:322–334

    PubMed  CAS  Google Scholar 

  • Pitts RF (1964) Renal production and excretion of ammonia. Am J Med. 36:720–42

    Article  PubMed  CAS  Google Scholar 

  • Price SR, Mitch WE (1998) Mechanisms stimulating protein degradation to cause muscle atrophy. Curr Opin Clin Nutr Metab Care 1:79–83

    Article  PubMed  CAS  Google Scholar 

  • Quentin F, Eladari D, Cheval L et al (2003) RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol 14:545–554

    Article  PubMed  CAS  Google Scholar 

  • Rabkin R, Shechter P, Shi JD et al (1996) Protein turnover in the hypertrophying kidney Miner Electrolyte. Metab 7:73–80

    Google Scholar 

  • Rustom R, Grime JS, Costigan M et al (1998) Proximal renal tubular peptide catabolism, ammonia excretion and tubular injury in patients with proteinuria: before and after lisinopril. Clin Sci 94:425–430

    PubMed  CAS  Google Scholar 

  • Tessari P, Garibotto G (2000) Inter-organ amino acid exchange. Curr Opin Clin Nutr Met Care 3:51–57

    Article  CAS  Google Scholar 

  • Tizianello A, De Ferrari G, Garibotto G et al (1980) Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 65:1162–1173

    Article  PubMed  CAS  Google Scholar 

  • Tizianello A, Deferrari G, Garibotto G et al (1982a) Renal ammoniagenesis in an early stage of metabolic acidosis in man. J Clin Invest 69:240–249

    Article  PubMed  CAS  Google Scholar 

  • Tizianello A, Deferrari G, Garibotto G et al (1982b) Renal ammoniagenesis during the adaptation to metabolic acidosis in man. Contr Nephrol 31:40–45

    CAS  Google Scholar 

  • Tizianello A, Deferrari G, Garibotto G et al (1988) Renal ammoniagenesis in man with metabolic alkalosis. Contr Nephrol 63:105–112

    CAS  Google Scholar 

  • Tizianello A, Garibotto G, Robaudo C et al (1991) Renal ammoniagenesis in man with chronic potassium depletion. Kidney Int 40:772–780

    Article  PubMed  CAS  Google Scholar 

  • Weiner D, Lee HL (2007) Molecular mechanisms of renal ammonia transport. Annu Rev Physiol 69:317–340

    Article  PubMed  CAS  Google Scholar 

  • Weiner D, Verlander JW (2003) Renal and hepatic expression of the ammonium transporter proteins, Rh B glycoprotein and Rh C glycoprotein. Acta Physiol Scand 179:331–338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministero dell’Università e della Ricerca Scientifica e Tecnologica (PRIN), the University of Genoa, and the ISN/Baxter CEC Extramural Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Garibotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garibotto, G., Verzola, D., Sofia, A. et al. Mechanisms of renal ammonia production and protein turnover. Metab Brain Dis 24, 159–167 (2009). https://doi.org/10.1007/s11011-008-9121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-008-9121-6

Keywords

Navigation