Skip to main content

Advertisement

Log in

Estrogen receptors inhibit Smad3 transcriptional activity through Ap-1 transcription factors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Breast tumorigenesis and breast cancer progression involves the deregulation or hyperactivation of intracellular signaling proteins that leads to uncontrolled cellular proliferation, invasion and metastasis. For example, the expression and cellular responses to estogen receptor (ER) and transforming growth factor β (TGFβ) signaling pathways change during breast tumorigenesis and breast cancer progression. While the expression and activity of ER and TGFβ maybe significant in the development of breast cancer, alterations in the cross-talk between these pathways may be equally important. Autocrine and paracrine effects of TGFβ on breast cancer cell growth have been known for some time, but only recently have direct interactions between ER and TGFβ been described. The purpose of this article was to further characterize the cross-talk between ER and TGFβ, by examining ER interaction with Smad3, a downstream mediator of TGFβ signaling. Transient transfection of Cos1 cells with p3TP-lux, demonstrate that ERα and ERβ1 repress Smad3 transcriptional activity in an estradiol-dependent manner and that this effect is inhibited by antiestrogen treatment. The ERβ variants, ERβ2 and ERβ5, did not have any effect on Smad3 transcriptional activity. Further experiments attempted to characterize the molecular mechanism by which activated ER inhibits Smad3 transcriptional activity. Results indicate that ligand-bound ER does not affect Smad3 protein expression levels and that ER does not form direct protein interactions with Smad3. Transient transfection of Cos1 cells with the Ap-1 transcription factor c-Jun but not c-Fos was able to rescue the inhibitory effect of estrogen on Smad3 transcriptional activity. Based on these results, a model is proposed whereby c-Jun is limiting in its ability to act as a Smad3 co-activator in the presence of E2-bound ER, possibly due to ER sequestering c-Jun away from the Smad3 responsive promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murphy LC, Watson P (2002) Steroid receptors in human breast tumorigenesis and breast cancer progression. Biomed Pharmacother 56:65–77

    Article  PubMed  CAS  Google Scholar 

  2. Woodward TL, Xie JW, Haslam SZ (1998) The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J Mammary Gland Biol Neoplasia 3:117–131

    Article  PubMed  CAS  Google Scholar 

  3. Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    PubMed  CAS  Google Scholar 

  4. Murphy LC, Leygue E, Niu Y, Snell L, Ho SM, Watson PH (2002) Relationship of coregulator and oestrogen receptor isoform expression to de novo tamoxifen resistance in human breast cancer. Br J Cancer 87:1411–1416

    Article  PubMed  CAS  Google Scholar 

  5. Murphy LC, Simon SL, Parkes A, Leygue E, Dotzlaw H, Snell L, Troup S, Adeyinka A, Watson PH (2000) Altered expression of estrogen receptor coregulators during human breast tumorigenesis. Cancer Res 60:6266–6271

    PubMed  CAS  Google Scholar 

  6. Reiss M, Barcellos-Hoff MH (1997) Transforming growth factor-beta in breast cancer: a working hypothesis. Breast Cancer Res Treat 45:81–95

    Article  PubMed  CAS  Google Scholar 

  7. Tong GM, Rajah TT, Zang XP, Pento JT (2002) The effect of antiestrogens on TGF-beta-mediated chemotaxis of human breast cancer cells. Anticancer Res 22:103–106

    PubMed  CAS  Google Scholar 

  8. Koli KM, Arteaga CL (1996) Complex role of tumor cell transforming growth factor (TGF)-beta s on breast carcinoma progression. J Mammary Gland Biol Neoplasia 1:373–380

    Article  PubMed  CAS  Google Scholar 

  9. Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, Reiss M (2002) Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 62:497–505

    PubMed  CAS  Google Scholar 

  10. Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 52:6949–6952

    PubMed  CAS  Google Scholar 

  11. Walker RA, Dearing SJ (1992) Transforming growth factor beta 1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur J Cancer 28:641–644

    Article  PubMed  CAS  Google Scholar 

  12. Zugmaier G, Lippman ME (1990) Effects of TGF beta on normal and malignant mammary epithelium. Ann N Y Acad Sci 593:272–275

    Article  PubMed  CAS  Google Scholar 

  13. Benson JR, Baum M, Colletta AA (1996) Role of TGF beta in the anti-estrogen response/resistance of human breast cancer. J Mammary Gland Biol Neoplasia 1:381–389

    Article  PubMed  CAS  Google Scholar 

  14. Chen H, Tritton TR, Kenny N, Absher M, Chiu JF (1996) Tamoxifen induces TGF-beta 1 activity and apoptosis of human MCF-7 breast cancer cells in vitro. J Cell Biochem 61:9–17

    Article  PubMed  CAS  Google Scholar 

  15. Thompson AM, Kerr DJ, Steel CM (1991) Transforming growth factor beta 1 is implicated in the failure of tamoxifen therapy in human breast cancer. Br J Cancer 63:609–614

    PubMed  CAS  Google Scholar 

  16. Matsuda T, Yamamoto T, Muraguchi A, Saatcioglu F (2001) Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J Biol Chem 276:42908–42914

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto T, Saatcioglu F, Matsuda T (2002) Cross-talk between bone morphogenic proteins and estrogen receptor signaling. Endocrinology 143:2635–2642

    Article  PubMed  CAS  Google Scholar 

  18. Yanagi Y, Suzawa M, Kawabata M, Miyazono K, Yanagisawa J, Kato S (1999) Positive and negative modulation of vitamin D receptor function by transforming growth factor-beta signaling through smad proteins. J Biol Chem 274:12971–12974

    Article  PubMed  CAS  Google Scholar 

  19. Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazono K, Kato S (1999) Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283:1317–1321

    Article  PubMed  CAS  Google Scholar 

  20. Song CZ, Tian X, Gelehrter TD (1999) Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci U S A 96:11776–11781

    Article  PubMed  CAS  Google Scholar 

  21. Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z (2001) SMAD3 represses androgen receptor-mediated transcription. Cancer Res 61:2112–2118

    PubMed  CAS  Google Scholar 

  22. Kang HY, Lin HK, Hu YC, Yeh S, Huang KE, Chang C (2001) From transforming growth factor-beta signaling to androgen action: identification of Smad3 as an androgen receptor coregulator in prostate cancer cells. Proc Natl Acad Sci U S A 98:3018–3023

    Article  PubMed  CAS  Google Scholar 

  23. Zheng L, Annab L, Afshari C, Lee W, Boyer T (2001) BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci U S A 98:9587–9592

    Article  PubMed  CAS  Google Scholar 

  24. Peng B, Lu B, Leygue E, Murphy L (2003) Putative functional characteristics of human estrogen receptor-beta isoforms. J Mol Endocrinol 30:13–29

    Article  PubMed  CAS  Google Scholar 

  25. Peng B, Lu B, Leygue E, Murphy LC (2003) Putative functional characteristics of human estrogen receptor-beta isoforms. J Mol Endocrinol 30:13–29

    Article  PubMed  CAS  Google Scholar 

  26. Jordan M, Wurm F (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33:136–143

    Article  PubMed  CAS  Google Scholar 

  27. Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, Danielpour D (2002) The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 277:1240–1248

    Article  PubMed  CAS  Google Scholar 

  28. Cowley S, Hoare S, Mosselman S, Parker M (1997) Estrogen receptors alpha and beta form heterodimers on DNA. J Biol Chem 272:19858–19862

    Article  PubMed  CAS  Google Scholar 

  29. Verrecchia F, Vindevoghel L, Lechleider RJ, Uitto J, Roberts AB, Mauviel A (2001) Smad3/AP-1 interactions control transcriptional responses to TGF-beta in a promoter-specific manner. Oncogene 20:3332–3340

    Article  PubMed  CAS  Google Scholar 

  30. Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang XF (1999). Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci U S A 96:4844–4849

    Article  PubMed  CAS  Google Scholar 

  31. Teyssier C, Belguise K, Galtier F, Chalbos D (2001) Characterization of the physical interaction between estrogen receptor alpha and JUN proteins. J Biol Chem 276:36361–36369

    Article  PubMed  CAS  Google Scholar 

  32. Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL (2001) Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem 276:13615–13621

    PubMed  CAS  Google Scholar 

  33. Webb P, Lopez GN, Uht RM, Kushner PJ (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9:443–456

    Article  PubMed  CAS  Google Scholar 

  34. Ogawa S, Inoue S, Watanabe T, Orimo A, Hosoi T, Ouchi Y, Muramatsu M (1998) Molecular cloning and characterization of human estrogen receptor bcx: potential inhibitor of estrogen action in human. Nucleic Acids Res 26:3505–3512

    Article  PubMed  CAS  Google Scholar 

  35. Leung Y, Mak P, Hassan S, Ho S (2006) Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling. Proc Natl Acad Sci U S A. 103:13162–13167

    Article  PubMed  CAS  Google Scholar 

  36. Leygue E, Dotzlaw H, Watson P, Murphy L (1999) Expression of estrogen receptor beta1, beta2, and beta5 messenger RNAs in human breast tissue. Cancer Res 59:1175–1179

    PubMed  CAS  Google Scholar 

  37. Saunders P, Millar M, Macpherson S, Irvine D, Groome N, Evans L, Sharpe R, Scobie G (2002) ERbeta1 and the ERbeta2 splice variant (ERbetacx/beta2) are expressed in distinct cell populations in the adult human testis. J Clin Endocrinol Metab 87:2706–2715

    Article  PubMed  CAS  Google Scholar 

  38. Skliris G, Leygue E, Curtis-Snell L, Watson P, Murphy L (2006) Expression of oestrogen receptor-beta in oestrogen receptor-alpha negative human breast tumours. Br J Cancer 95:616–626

    Article  PubMed  CAS  Google Scholar 

  39. Saji S, Omoto Y, Shimizu C, Warner M, Hayashi Y, Horiguchi S, Watanabe T, Hayashi S, Gustafsson J (2002) Expression of estrogen receptor (ER) (beta)cx protein in ER(alpha)-positive breast cancer: specific correlation with progesterone receptor. Cancer Res 62:4849–4853

    PubMed  CAS  Google Scholar 

  40. Malek D, Gust R, Kleuser B (2006) 17-Beta-estradiol inhibits transforming-growth-factor-beta-induced MCF-7 cell migration by Smad3-repression. Eur J Pharmacol 534:39–47

    Article  PubMed  CAS  Google Scholar 

  41. Yamamura Y, Hua X, Bergelson S, Lodish HF (2000) Critical role of Smads and AP-1 complex in transforming growth factor-beta -dependent apoptosis. J Biol Chem 275:36295–36302

    Article  PubMed  CAS  Google Scholar 

  42. Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF (1997) Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol Cell Biol 17:7019–7028

    PubMed  CAS  Google Scholar 

  43. Cheng CK, Chow BK, Leung PC (2003) An activator protein 1-like motif mediates 17beta-estradiol repression of gonadotropin-releasing hormone receptor promoter via an estrogen receptor alpha-dependent mechanism in ovarian and breast cancer cells. Mol Endocrinol 17:2613–2629

    Article  PubMed  CAS  Google Scholar 

  44. Qi X, Borowicz S, Pramanik R, Schultz RM, Han J, Chen G (2004) Estrogen receptor inhibits c-Jun-dependent stress-induced cell death by binding and modifying c-Jun activity in human breast cancer cells. J Biol Chem 279:6769–6777

    Article  PubMed  CAS  Google Scholar 

  45. Teyssier C, Belguise K, Galtier F, Chalbos D (2001) Characterization of the physical interaction between estrogen receptor alpha and JUN proteins. J Biol Chem 276:36361–36369

    Article  PubMed  CAS  Google Scholar 

  46. Dennler S, Pendaries V, Tacheau C, Costas M, Mauviel A, Verrecchia F (2005) The steroid receptor co-activator-1 (SRC-1) potentiates TGF-beta/Smad signaling: role of p300/CBP. Oncogene 24:1936–1945

    Article  PubMed  CAS  Google Scholar 

  47. McKenna N, Lanz R, O’Malley B (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocrine Rev 20:321–344

    Article  CAS  Google Scholar 

  48. Kobayashi Y, Kitamoto T, Masuhiro Y, Watanabe M, Kase T, Metzger D, Yanagisawa J, Kato S (2000) p300 mediates functional synergism between AF-1 and AF-2 of estrogen receptor alpha and beta by interacting directly with the N-terminal A/B domains. J Biol Chem 275:15645–15651

    Article  PubMed  CAS  Google Scholar 

  49. Pouponnot C, Jayaraman L, Massague J (1998) Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 273:22865–22868

    Article  PubMed  CAS  Google Scholar 

  50. Buck M, Pfizenmaier K, Knabbe C (2004) Antiestrogens induce growth inhibition by sequential activation of p38 mitogen-activated protein kinase and transforming growth factor-beta pathways in human breast cancer cells. Mol Endocrinol 18:1643–1657

    Article  PubMed  CAS  Google Scholar 

  51. Eferl R, Wagner E (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Army Medical Research and Materiel Command (USAMRMC). T C was a USAMRMC Studentship recipient. We thank C. Njue for help in analyzing data. This work was also supported by operating grants from the Canadian Institutes of Health Research (CIHR) and the Canadian Breast Cancer Research Alliance (CBCRA), We thank the strong support of the CancerCare Manitoba Foundation for our facilities at the Manitoba Institute of Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh C. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherlet, T., Murphy, L.C. Estrogen receptors inhibit Smad3 transcriptional activity through Ap-1 transcription factors. Mol Cell Biochem 306, 33–42 (2007). https://doi.org/10.1007/s11010-007-9551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9551-1

Keywords

Navigation