Skip to main content
Log in

Water and Sodium in Heart Failure: A Spotlight on Congestion

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

An Editorial Expression of Concern to this article was published on 29 April 2021

This article has been updated

Abstract

Despite all available therapies, the rates of hospitalization and death from heart failure (HF) remain unacceptably high. The most common reasons for hospital admission are symptoms related to congestion. During hospitalization, most patients respond well to standard therapy and are discharged with significantly improved symptoms. Post-discharge, many patients receive diligent and frequent follow-up. However, rehospitalization rates remain high. One potential explanation is a persistent failure by clinicians to adequately manage congestion in the outpatient setting. The failure to successfully manage these patients post-discharge may represent an unmet need to improve the way congestion is both recognized and treated. A primary aim of future HF management may be to improve clinical surveillance to prevent and manage chronic fluid overload while simultaneously maximizing the use of evidence-based therapies with proven long-term benefit. Improvement in cardiac function is the ultimate goal and maintenance of a “dry” clinical profile is important to prevent hospital admission and improve prognosis. This paper focuses on methods for monitoring congestion, and strategies for water and sodium management in the context of the complex interplay between the cardiac and renal systems. A rationale for improving recognition and treatment of congestion is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:e46–e215

    Article  PubMed  Google Scholar 

  2. Nohria A, Tsang SW, Fang JC et al (2003) Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol 41:1797–1804

    Article  PubMed  Google Scholar 

  3. Gheorghiade M, Zannad F, Sopko G et al (2005) Acute heart failure syndromes: current state and framework for future research. Circulation 112:3958–3968

    Article  PubMed  Google Scholar 

  4. Gelman S (2008) Venous function and central venous pressure: a physiologic story. Anesthesiology 108:735–748

    Article  PubMed  Google Scholar 

  5. Gheorghiade M, De Luca L, Fonarow GC et al (2005) Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol 96:11G–17G

  6. Gheorghiade M, Filippatos G, De Luca L et al (2006) Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med 119:S3–S10

  7. Adamson PB, Magalski A, Braunschweig F et al (2003) Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol 41:565–571

  8. Cotter G, Metra M, Milo-Cotter O et al (2008) Fluid overload in acute heart failure–re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail 10:165–169

    Article  PubMed  Google Scholar 

  9. Androne AS, Hryniewicz K, Hudaihed A et al (2004) Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes. Am J Cardiol 93:1254–1259

    Article  PubMed  Google Scholar 

  10. Stevenson LW, Theodore E (2009) Woodward Award: coming in out of the rain. Relieving congestion in heart failure. Trans Am Clin Climatol Assoc 120:177–187

    PubMed Central  PubMed  Google Scholar 

  11. Campbell P, Drazner MH, Kato M et al (2011) Mismatch of right- and left-sided filling pressures in chronic heart failure. J Card Fail 17:561–568

    Article  PubMed  Google Scholar 

  12. Rohde LE, Beck-da-Silva L, Goldraich L et al (2004) Reliability and prognostic value of traditional signs and symptoms in outpatients with congestive heart failure. Can J Cardiol 20:697–702

    PubMed  Google Scholar 

  13. Volpicelli G, Elbarbary M, Blaivas M et al (2012) International Liaison Committee on Lung Ultrasound (ILC-LUS) for International Consensus Conference on Lung Ultrasound (ICC LUS). International evidence -based recommendations for point-of-care lung ultrasound. Intensive Care Med 38(4):577–591

    Article  PubMed  Google Scholar 

  14. Celik G, Kara I, Yilmaz M, Apiliogullari S (2011) The relationship between bioimpedance analysis, haemodynamic parameters of haemodialysis, biochemical parameters and dry weight. J Int Med Res 39(6):2421–2428

  15. Adams KF Jr, Fonarow GC, Emerman CL et al (2005) Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 149:209–216

    Article  PubMed  Google Scholar 

  16. Mahon NG, Blackstone EH, Francis GS et al (2002) The prognostic value of estimated creatinine clearance alongside functional capacity in ambulatory patients with chronic congestive heart failure. J Am Coll Cardiol 40:1106–1113

  17. Akhter MW, Aronson D, Bitar F et al (2004) Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol 94:957–960

    Article  CAS  PubMed  Google Scholar 

  18. Ronco C, Haapio M, House AA et al (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539

  19. Triposkiadis F, Starling RC, Boudoulas H et al (2012) The cardiorenal syndrome in heart failure: cardiac? renal? syndrome? Heart Fail Rev 17(3):355–366

  20. Topalian S, Ginsberg F, Parrillo JE (2008) Cardiogenic shock. Crit Care Med 36(1 Suppl):S66–S74

    Article  PubMed  Google Scholar 

  21. Nohria A, Hasselblad V, Stebbins A et al (2008) Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol 51:1268–1274

    Article  PubMed  Google Scholar 

  22. Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Article  PubMed Central  PubMed  Google Scholar 

  23. Damman K, Navis G, Smilde TD et al (2007) Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 9:872–878

    Article  PubMed  Google Scholar 

  24. Ganda A, Onat D, Demmer RT et al (2010) Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep 7(66–74):25

    Google Scholar 

  25. Testani JM, Chen J, McCauley BD et al (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272

  26. Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney Injury. Crit Care 11:R31

    Article  PubMed Central  PubMed  Google Scholar 

  27. Damman K, Navis G, Voors AA et al (2007) Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail 13:599–608

    Article  PubMed  Google Scholar 

  28. Damman K, Masson S, Hillege HL et al (2011) Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J 32:2705–2712

    Article  CAS  PubMed  Google Scholar 

  29. Jungbauer CG, Birner C, Jung B et al (2011) Kidney injury molecule-1 and N-acetyl-beta-d glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome. Eur J Heart Fail 13:1104–1110

    Article  CAS  PubMed  Google Scholar 

  30. Damman K, Van Veldhuisen DJ, Navis G et al (2010) Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart 96:1297–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Damman K, Chuen MJNK, MacFadyen RJ et al (2011) Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J Am Coll Cardiol 57:2233–2241

    Article  PubMed  Google Scholar 

  32. Emerman CL, Marco TD, Costanzo MR (2004) Peacock WFt. for the ASAC. Impact of intravenous diuretics on the outcomes of patients hospitalized with acute decompensated heart failure: insights from the ADHERE(R) Registry. J Card Fail 10:S116–S117

    Article  Google Scholar 

  33. Felker GM, O’Connor CM, Braunwald E (2009) Loop diuretics in acute decompensated heart failure: necessary? Evil? A necessary evil? Circ Heart Fail 2:56–62

    Article  PubMed Central  PubMed  Google Scholar 

  34. Greither A, Goldman S, Edelen JS et al (1979) Pharmacokinetics of furosemide in patients with congestive heart failure. Pharmacology 19:121–131

  35. Felker GM, Lee KL, Bull DA et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364(9):797–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Piano MR, Prasun MA, Stamos T, Groo V (2011) Flexible diuretic titration in chronic heart failure: where is the evidence? J Card Fail 17:944–954

    Article  PubMed  Google Scholar 

  37. Metra M, Gheorghiade M (2010) Bonow RO, Dei Cas L. Postdischarge assessment after a heart failure hospitalization: the next step forward. Circulation 122:1782–1785

    Article  PubMed  Google Scholar 

  38. Wilcox JE, Fonarow GC, Yancy CW et al (2012) Factors associated with improvement in ejection fraction in clinical practice among patients with heart failure: findings from IMPROVE HF. Am Heart J 163(49–56):e2

    PubMed  Google Scholar 

  39. Lee DS, Stukel TA, Austin PC et al (2010) Improved outcomes with early collaborative care of ambulatory heart failure patients discharged from the emergency department. Circulation 122:1806–1814

    Article  PubMed  Google Scholar 

  40. Zile MR, Bennett TD, Sutton MSJ et al (2008) Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 118:1433–1441

    Article  PubMed  Google Scholar 

  41. Blair JE, Khan S, Konstam MA et al (2009) Weight changes after hospitalization for worsening heart failure and subsequent re-hospitalization and mortality in the EVEREST trial. Eur Heart J 30:1666–1673

    Article  PubMed  Google Scholar 

  42. Ritzema J, Troughton R, Melton I et al (2010) Hemodynamically Guided Home Self-Therapy in Severe Heart Failure Patients (HOMEOSTASIS) Study Group. Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation 121:1086–1095

    Article  PubMed  Google Scholar 

  43. Alderman MH, Cohen HW (2012) Dietary sodium intake and cardiovascular mortality: controversy resolved? Curr Hypertens Rep 14:193–201

    Article  CAS  PubMed  Google Scholar 

  44. Cohen HW, Hailpern SM, Alderman MH (2008) Sodium intake and mortality follow-up in the Third National Health and Nutrition Examination Survey (NHANES III). J Gen Intern Med 23:1297–1302

    Article  PubMed Central  PubMed  Google Scholar 

  45. O’Donnell MJ, Yusuf S, Mente A et al (2011) Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA 306:2229–2238

    PubMed  Google Scholar 

  46. Parrinello G, Di Pasquale P, Licata G et al (2009) Long-term effects of dietary sodium intake on cytokines and neurohormonal activation in patients with recently compensated congestive heart failure. J Card Fail 15:864–873

    Article  CAS  PubMed  Google Scholar 

  47. Graudal NA, Hubeck-Graudal T, Jürgens G (2012) Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am J Hypertens 25:1–15

    Article  CAS  PubMed  Google Scholar 

  48. Lennie TA, Song EK, Wu JR et al (2011) Three gram sodium intake is associated with longer event-free survival only in patients with advanced heart failure. J Card Fail 17:325–330

    Article  PubMed Central  PubMed  Google Scholar 

  49. Aliti GB, Rabelo ER, Clausell N et al (2013) Aggressive Fluid and Sodium Restriction in Acute Decompensated Heart Failure: a Randomized Clinical Trial. JAMA Intern Med. 20:1–7

    Google Scholar 

  50. Paterna S, Parrinello G, Cannizzaro S et al (2009) Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol 103:93–102

    Article  CAS  PubMed  Google Scholar 

  51. Paterna S, Gaspare P, Fasullo S et al (2008) Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin Sci 114:221–230

  52. Hernandez AF, Greiner MA, Fonarow GC et al (2010) Relationship between early physician follow-up and 30-day readmission among Medicare beneficiaries hospitalized for heart failure. JAMA 303:1716–1722

    Article  CAS  PubMed  Google Scholar 

  53. Parrinello G, Torres D, Paterna S et al (2013) Early and personalized ambulatory follow-up to tailor furosemide and fluid intake according to congestion in post-discharge heart failure. Intern Emerg Med 8(3):221–228

    Article  PubMed  Google Scholar 

  54. Kircher BJ, Himelman RB, Schiller NB (1990) Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 66:493–496

  55. Pepi M, Tamborini G, Galli C et al (1994) A new formula for echo-Doppler estimation of right ventricular systolic pressure. J Am Soc Echocardiogr 7:20–26

  56. Brennsn JM, Blair JE, Goonewardena S et al (2007) Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 20:857–861

  57. Jue J, Chung W, Schiller NB (1992) Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr 5:613–619

  58. Traversi E, Cobelli F, Pozzoli M (2001) Doppler echocardiography reliably predicts pulmonary artery wedge pressure in patients with chronic heart failure even when atrial fibrillation is present. Eur J Heart Fail 3:173–181

  59. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

  60. Kusunose K, Yamada H, Nishio S et al (2009) Clinical utility of single-beat E/e' obtained by simultaneous recording of flow and tissue Doppler velocities in atrial fibrillation with preserved systolic function. JACC Cardiovasc Imaging 2:1147–1156

  61. Cibinel GA, Casoli G, Elia F et al (2012) Diagnostic accuracy and reproducibility of pleural and lung ultrasound in discriminating cardiogenic causes of acute dyspnea in the emergency department. Intern Emerg Med 7:65–70

Download references

Conflict of interest

None of the authors have any potential conflict of interest in the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspare Parrinello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parrinello, G., Greene, S.J., Torres, D. et al. Water and Sodium in Heart Failure: A Spotlight on Congestion. Heart Fail Rev 20, 13–24 (2015). https://doi.org/10.1007/s10741-014-9438-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9438-7

Keywords

Navigation