Skip to main content
Log in

Mitral regurgitation quantification by cardiovascular magnetic resonance: a comparison of indirect quantification methods

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Quantification of mitral regurgitation (MR) using cardiovascular magnetic resonance can be achieved by three indirect methods. The aims of the study were to determine their agreement, observer variability and effect on grading MR severity. The study comprised 16 healthy volunteers and 36 MR patients. Quantification was performed using the ‘standard’ [left ventricular stroke volume (LVSV)–aortic forward flow (AoFF)], ‘volumetric’ [LVSV–right ventricular stroke volume (RVSV)] and ‘flow’ method [mitral inflow (MiIF)–AoFF]. In healthy volunteers without MR, LVSV was larger than AoFF (mean difference ±SD: 12 ± 6 ml, P < 0.0001). Only small differences were found between LVSV–RVSV (3 ± 6 ml) and MiIF–AoFF (1 ± 5 ml). In patients, mitral regurgitant volumes (MRVs)/fractions (MRFs) were larger (P < 0.0001) using the ‘standard’ method (90 ± 31 ml/51 ± 11 %) compared with the ‘volumetric’ (76 ± 30 ml/42 ± 11 %) and ‘flow’ method (70 ± 32 ml/44 ± 15 %). Inter-observer variability was lowest for the ‘flow’ and highest for the ‘volumetric’ method, while intra-observer variability was similar for all three methods. In 29 operated patients with severe MR, MRVs were above the guideline threshold (≥60 ml) in 100, 86 and 83 % of the cases, and MRFs were above the threshold (≥50 %) in 76, 32 and 48 % of the cases, when using the ‘standard’, ‘volumetric’ and ‘flow’ method respectively. In conclusion, the choice of method can affect the grading of MR severity and thereby eventually the clinical decision-making and timing of surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A, Falk V, Iung B, Lancellotti P, Pierard L, Price S, Schafers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, Von Oppell UO, Windecker S, Zamorano JL, Zembala M (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496

    Article  PubMed  Google Scholar 

  2. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM 3rd, Thomas JD (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129:e521–e643

    Article  PubMed  Google Scholar 

  3. Lancellotti P, Moura L, Pierard LA, Agricola E, Popescu BA, Tribouilloy C, Hagendorff A, Monin JL, Badano L, Zamorano JL (2010) European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 11:307–332

    Article  PubMed  Google Scholar 

  4. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

  5. Myerson SG, Francis JM, Neubauer S (2010) Direct and indirect quantification of mitral regurgitation with cardiovascular magnetic resonance, and the effect of heart rate variability. MAGMA 23:243–249

    Article  PubMed  Google Scholar 

  6. Kizilbash AM, Hundley WG, Willett DL, Franco F, Peshock RM, Grayburn PA (1998) Comparison of quantitative Doppler with magnetic resonance imaging for assessment of the severity of mitral regurgitation. Am J Cardiol 81:792–795

    Article  CAS  PubMed  Google Scholar 

  7. Hundley WG, Li HF, Willard JE, Landau C, Lange RA, Meshack BM, Hillis LD, Peshock RM (1995) Magnetic resonance imaging assessment of the severity of mitral regurgitation. Comparison with invasive techniques. Circulation 92:1151–1158

    Article  CAS  PubMed  Google Scholar 

  8. Kon MW, Myerson SG, Moat NE, Pennell DJ (2004) Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis 13:600–607

    PubMed  Google Scholar 

  9. Fujita N, Chazouilleres AF, Hartiala JJ, O’Sullivan M, Heidenreich P, Kaplan JD, Sakuma H, Foster E, Caputo GR, Higgins CB (1994) Quantification of mitral regurgitation by velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 23:951–958

    Article  CAS  PubMed  Google Scholar 

  10. Kilner PJ, Gatehouse PD, Firmin DN (2007) Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson 9:723–728

    Article  PubMed  Google Scholar 

  11. Buonocore MH, Bogren H (1992) Factors influencing the accuracy and precision of velocity-encoded phase imaging. Magn Reson Med 26:141–154

    Article  CAS  PubMed  Google Scholar 

  12. Rolf MP, Hofman MB, Gatehouse PD, Markenroth-Bloch K, Heymans MW, Ebbers T, Graves MJ, Totman JJ, Werner B, van Rossum AC, Kilner PJ, Heethaar RM (2011) Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification—a multi-vendor study. J Cardiovasc Magn Reson 13:18

    Article  PubMed Central  PubMed  Google Scholar 

  13. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  14. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  15. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  CAS  PubMed  Google Scholar 

  16. Chuang ML, Gona P, Hautvast GL, Salton CJ, Blease SJ, Yeon SB, Breeuwer M, O’Donnell CJ, Manning WJ (2012) Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging 5:1115–1123

    Article  PubMed Central  PubMed  Google Scholar 

  17. Papavassiliu T, Kuhl HP, Schroder M, Suselbeck T, Bondarenko O, Bohm CK, Beek A, Hofman MM, van Rossum AC (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64

    Article  PubMed  Google Scholar 

  18. Marcus JT, Gotte MJ, DeWaal LK, Stam MR, Van der Geest RJ, Heethaar RM, Van Rossum AC (1999) The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson 1:1–6

    Article  CAS  PubMed  Google Scholar 

  19. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB (1991) Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol 157:9–16

    Article  CAS  PubMed  Google Scholar 

  20. Dujardin KS, Enriquez-Sarano M, Bailey KR, Nishimura RA, Seward JB, Tajik AJ (1997) Grading of mitral regurgitation by quantitative Doppler echocardiography: calibration by left ventricular angiography in routine clinical practice. Circulation 96:3409–3415

    Article  CAS  PubMed  Google Scholar 

  21. Cawley PJ, Hamilton-Craig C, Owens DS, Krieger EV, Strugnell WE, Mitsumori L, D’Jang CL, Schwaegler RG, Nguyen KQ, Nguyen B, Maki JH, Otto CM (2013) Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging 6:48–57

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks go to Max Petzold (Centre of Applied Biostatistics, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden) for statistical advice. This study was funded by a project grant from the Health & Medical Care Committee of the Regional Executive Board (Grant No.: 100431), Västra Götaland Region, Sweden.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian L. Polte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polte, C.L., Bech-Hanssen, O., Johnsson, Å.A. et al. Mitral regurgitation quantification by cardiovascular magnetic resonance: a comparison of indirect quantification methods. Int J Cardiovasc Imaging 31, 1223–1231 (2015). https://doi.org/10.1007/s10554-015-0681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0681-3

Keywords

Navigation