Skip to main content

Advertisement

Log in

Molecular dynamics studies of a hexameric purine nucleoside phosphorylase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed.

Purine nucleoside phosphorylase is a potential target for the development of antibacterial and antimalarial drugs. Molecular dynamics simulations have been performed to evaluate the structural and dynamical properties of PfPNP. Two systems were simulated, the protein in the apo form and a second system for the ternary complex involving PfPNP, SO4, and an inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilles HM (2002) In: Warrell DA, Gilles HM (eds) Essential Malariology. Arnold, New York, pp 1–7

  2. World Health Organization (2007) Malaria, Fact Sheet No. 94. Geneva, Switzerland

  3. Suh KN, Kain KC, Keystone JS (2004) Malaria. Can Med Assoc J 170:1693–1702

    Article  Google Scholar 

  4. Sachs JD (2002) A new global effort to control malaria. Science 298:122–124

    Article  CAS  Google Scholar 

  5. Wellems TE (2002) Plasmodium chloroquine resistance and the search for a replacement antimalarial drug. Science 298:124–125

    Article  CAS  Google Scholar 

  6. Hassan HF, Coombs GH (1988) Purine and pyrimidine metabolism in parasitic protozoa. FEMS Microbiol Rev 4:47–83

    CAS  Google Scholar 

  7. Asahi H, Kanazawa T, Kajihara Y, Takahashi K, Takahashi T (1996) Hypoxanthine: a low molecular weight factor essential for growth of erythrocytic Plasmodium falciparum in a serum-free medium. Parasitology 113:19–23

    Article  CAS  Google Scholar 

  8. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Kim K, Schramm VL (2002) Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum. J Biol Chem 277:3219–3225

    Article  CAS  Google Scholar 

  9. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K (2002) Purine-less death in Plasmodium falciparum induced by immucillin-H, a transition state analogue of purine nucleoside phosphorylase. J Biol Chem 277:3226–3231

    Article  CAS  Google Scholar 

  10. Ting LM, Shi W, Lewandowicz A, Singh V, Mwakingwe A, Birck MR, Ringia EA, Bench G, Madrid DC, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K (2005) Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J Bio Chem 280:9547–9554

    Article  CAS  Google Scholar 

  11. Schnick C, Robien MA, Brzozowski AM, Dodson EJ, Murshudov GB, Anderson L, Luft, Mehlin C, Hol WGJ, Brannigan JA, Wilkinson AJ (2005) Structures of Plasmodium falciparum purine nucleoside phosphorylase complexed with sulfate and its natural substrate inosine. Acta Crystallogr D Biol Crystallogr 61:1245–1254

    Article  Google Scholar 

  12. Shi W, Ting LM, Kicska GA, Lewandowicz A, Tyler PC, Evans GB, Furneaux RH, Kim K, Almo SC, Schramm VL (2004) Plasmodium falciparum purine nucleoside phosphorylase. J Biol Chem 279:18103–18106

    Article  CAS  Google Scholar 

  13. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  Google Scholar 

  14. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comp Chem 26:1701–1718 http://www.gromacs.org

    Article  Google Scholar 

  15. Ooestenbrink C, Soares TA, van der Vegt NF, van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34:273–284

    Article  Google Scholar 

  16. van Aalten DM, Bywater B, Findlay JB, Hendlich M, Hooft RW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Comput Aided Mol Des 10:255–262 http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html

    Article  Google Scholar 

  17. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  18. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  19. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel D Publishing Company Dordrecht, The Netherlands, pp 331–342

    Google Scholar 

  20. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  21. Miyamoto S, Kollman PA (1992) Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. J Comput Chem 16:226–245

    Google Scholar 

  22. Chowdhuri S, Tan ML, Ichiye T (2006) Dynamical properties of the soft sticky dipole-quadrupole-octupole water model: a molecular dynamics study. J Chem Phys 125:144513

    Article  Google Scholar 

  23. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald - an n.log(n) method for ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  24. Timmers LFSM, Caceres RA, Vivan AL, Gava LM, Dias R, Ducati RG, Basso LA, Santos DS, de Azevedo WF (2008) Structural studies of human purine nucleoside phosphorylase: towards a new specific empirical scoring function. Arch Biochem Biophys 479:28–38

    Article  CAS  Google Scholar 

  25. Silva RG, Nunes JE, Canduri F, Borges JC, Gava LM, Moreno FB, Basso LA, Santos DS (2007) Purine nucleoside phosphorylase: a potential target for the development of drugs to treat T-cell- and apicomplexan parasite-mediated diseases. Curr Drugs Target 8:413–422

    Article  CAS  Google Scholar 

  26. de Azevedo WF Jr, Canduri F, dos Santos DM, Silva RG, de Oliveira JS, de Carvalho LPS, Basso LA, Mendes MA, Palma MS, Santos DS (2003) Crystal structure of human purine nucleoside phosphorylase at 2.3 Å resolution. Biochem Biophys Res Commun 308:545–552

    Article  Google Scholar 

  27. Caceres RA, Saraiva Timmers LF, Dias R, Basso LA, Santos DS, de Azevedo WF (2008) Molecular modeling and dynamics simulations of PNP from Streptococcus agalactiae. Bioorg Med Chem 16:4984–4993

    Article  CAS  Google Scholar 

  28. Timmers LFSM, Caceres RA, Basso LA, Santos DS, de Azevedo Jr. WF (2008) Structural Bioinformatics Study of PNP from Listeria monocytogenes. Protein Pep Lett 15:843–849

    Article  CAS  Google Scholar 

  29. de Azevedo WF Jr, Canduri F, dos Santos DM, Pereira JH, Dias MVB, Silva RG, Mendes MA, Basso LA, Palma MS, Santos DS (2003) Structural basis for inhibition of human PNP by immucillin-H. Biochem Biophys Res Commun 309:917

    Article  Google Scholar 

  30. Canduri F, Fadel V, Basso LA, Palma MS, Santos DS, de Azevedo WF (2005) New catalytic mechanism for human purine nucleoside phosphorylase. Biochem Biophys Res Commun 327:646–649

    Article  CAS  Google Scholar 

  31. Santos DM, Canduri F, Pereira JH, Dias MVB, Silva RG, Mendes MA, Palma MS, Basso LA, de Azevedo WF, Santos DS (2003) Crystal structure of human purine nucleoside phosphorylase complexed with acyclovir. Biochem Biophys Res Commun 308:553–559

    Article  Google Scholar 

  32. de Azevedo WF, Canduri F, dos Santos DM, Pereira JH, Dias MVB, Silva RG, Mendes MA, Basso LA, Palma MS, Santos DS (2003) Crystal structure of human PNP complexed with guanine. Biochem Biophys Res Commun 312:767–772

    Article  Google Scholar 

  33. Silva RG, Pereira JH, Canduri F, de Azevedo WF, Basso LA, Santos DS (2005) Kinetics and crystal structure of human purine nucleoside phosphorylase in complex with 7-methyl-6-thio-guanosine. Arch Biochem Biophys 442:49–58

    Article  CAS  Google Scholar 

  34. Canduri F, dos Santos DM, Silva RG, Mendes MA, Basso LA, Palma MS, de Azevedo WF, Santos DS (2004) Structures of human purine nucleoside phosphorylase complexed with inosine and ddI. Biochem Biophys Res Comum 313:907–914

    Article  CAS  Google Scholar 

  35. Canduri F, Silva RG, dos Santos DM, Palma MS, Basso LA, Santos DS, de Azevedo WF(2005) Structure of human PNP complexed with ligands. Acta Crystallogr D Biol Crystallogr 61:856–862

    Article  Google Scholar 

  36. Nolasco DO, Canduri F, Pereira JH, Cortinóz, Palma MS, Oliveira JS, Basso LA, de Azevedo WF, Santos DS (2004) Crystallographic structure of PNP from Mycobacterium tuberculosis at 1.9 Å resolution. Biochem Biophys Res Comum 324:789–794

    Article  CAS  Google Scholar 

  37. de Azevedo WF, Dias R (2008) Computational methods for calculation of ligand-binding affinity. Curr Drug Targets 9:1031–1039

    Article  Google Scholar 

  38. de Azevedo WF (2008) Protein-drug interactions. Curr Drug Targets 9:1030–1030

    Article  Google Scholar 

  39. Dias R, de Azevedo WF (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  Google Scholar 

  40. Canduri F, de Azevedo WF (2008) Protein crystallography in drug discovery. Curr Drug Targets 9:1048–1053

    Article  CAS  Google Scholar 

  41. Pauli I, Timmers LFSM, Caceres RA, Soares MBP, de Azevedo WF (2008) In silico and in vitro. Identifying new drugs. Curr Drug Targets 9:1054–1061

    Article  CAS  Google Scholar 

  42. Dias R, Timmers LFSM, Caceres RA, de Azevedo WF (2008) Evaluation of molecular docking using polynomial empirical scoring functions. Curr Drug Targets 9:1062–1070

    Article  CAS  Google Scholar 

  43. de Azevedo WF, Dias R (2008) Experimental approaches to evaluate the thermodynamics of protein-drug interactions. Curr Drug Targets 9:1071–1076

    Article  Google Scholar 

  44. Caceres RA, Pauli I, Timmers LFSM, de Azevedo WF (2008) Molecular recognition models: a challenge to overcome. Curr Drug Targets 9:1077–1083

    Article  CAS  Google Scholar 

  45. Barcellos GB, Pauli I, Caceres RA, Timmers LFSM, Dias R, de Azevedo WF (2008) Molecular modeling as tool for drug discovery. Curr Drug Targets 9:1084–1091

    Article  CAS  Google Scholar 

  46. Timmers LFSM, Pauli I, Caceres RA, de Azevedo WF (2008) Drug-binding databases. Curr Drug Targets 9:1092–1099

    Article  CAS  Google Scholar 

  47. de Azevedo WF , Canduri F, Fadel V, Teodoro LG, Hial V, Gomes RA (2001) Biochem Biophys Res Commun 287:277–281

    Article  Google Scholar 

  48. de Azevedo WF (2007) Editorial. Current Drug Targets 8:387–387

    Article  Google Scholar 

  49. Canduri F, Perez PC, Caceres RA, de Azevedo WF (2007) Protein kinases as targets for antiparasitic chemotherapy drugs. Curr Drug Targets 8:389–398

    Article  CAS  Google Scholar 

  50. Marques MR, Pereira JH, Oliveira JS, Basso LA, Santos DS, de Azevedo WF , Palma MS (2007) The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr Drug Targets 8:445–457

    Article  CAS  Google Scholar 

  51. Dias MVB, Ely F, Palma MS, de Azevedo WF, Basso LA, Santos DS (2007) Chorismate synthase: an attractive target for drug development against orphan diseases. Curr Drug Targets 8:437–444

    Article  CAS  Google Scholar 

  52. Pereira JH, Vasconcelos IB, Oliveira JS, Caceres RA, de Azevedo WF , Basso LA, Santos DS (2007) Shikimate kinase: a potential target for development of novel antitubercular. Curr Drug Targets 8:459–468

    Article  CAS  Google Scholar 

  53. de Amorim HLN, Caceres RA, Netz PA (2008) Linear Interaction Energy (LIE) method in lead discovery and optimization. Curr Drug Targets 9:1100–1105

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq (Conselho Nacional de Pesquisas, Brazil), CAPES and Instituto do Milênio (CNPq-MCT). RAC would like to thank CNPq for the fellowship. WFA and RGS are senior researchers of CNPq

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr..

Additional information

F. B. Z and R. A. C. contributed equally to this work, the order of authorship being arbitrary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanchi, F.B., Caceres, R.A., Stabeli, R.G. et al. Molecular dynamics studies of a hexameric purine nucleoside phosphorylase. J Mol Model 16, 543–550 (2010). https://doi.org/10.1007/s00894-009-0557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0557-3

Keywords

Navigation