Skip to main content
Log in

Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akagi Y, Isaka Y, Arai M, Kaneko T, Takenaka M, Moriyama T, Kaneda Y, Ando A, Orita Y, Kamada T, Ueda N, Imai E (1996) Inhibition of TGF-β1 expression by antisense oligonucleotides suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int 50:148–155

    Article  PubMed  CAS  Google Scholar 

  • Akaoka K, White RHR, Raafat F (1995) Glomerular morphometry in childhood reflux nephropathy, emphasizing the capillary changes. Kidney Int 47:1108–1114

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Muñoz P, Mauer M, Kim Y, Rich SS, Miller ME, Russell GB, López-Novoa JM, Caramori ML (2010) Cellular basis of diabetic nephropathy. V. Endoglin expression levels and diabetic nephropathy risk in patients with type 1 diabetes. J Diabetes Complications 24:242–249

    Article  PubMed  Google Scholar 

  • Arciniegas E, Sutton AB, Allen TD, Schor AM (1992) Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J Cell Sci 103:521–529

    PubMed  CAS  Google Scholar 

  • Baricos WH, Cortez SL, Deboisblanc M, Xin S (1999) Transforming growth factor-β is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. J Am Soc Nephrol 10:790–795

    PubMed  CAS  Google Scholar 

  • Bhaskaran M, Reddy K, Radhakrishanan N, Franki N, Ding G, Singhal PC (2003) Angiotensin II induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol 284:F955–F965

    PubMed  CAS  Google Scholar 

  • Border WA, Noble NA (1997) TGF-β in kidney fibrosis: a target for gene therapy. Kidney Int 51:1388–1396

    Article  PubMed  CAS  Google Scholar 

  • Bottinger EP (2007) TGF-β in renal injury and disease. Semin Nephrol 27:309–320

    Article  PubMed  CAS  Google Scholar 

  • Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR (2005) Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 1711:197–207

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Chen CA, Guh JY, Chang JM, Shin SJ, Lai YH (2000) Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci 67:2345–2353

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Huang C, Morinelli TA, Trojanowska M, Paul RV (2002) Blockade of the effects of TGF-beta1 on mesangial cells by overexpression of Smad7. J Am Soc Nephrol 13:887–893

    PubMed  CAS  Google Scholar 

  • Chen S, Kasama Y, Lee JS, Jim B, Marin M, Ziyadeh FN (2004) Podocyte-derived vascular endothelial growth factor mediates the stimulation of α3(IV) collagen production by transforming growth factor-α1 in mouse podocytes. Diabetes 53:2939–2949

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Grande JP (2002) Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med (Maywood) 227:943–956

    CAS  Google Scholar 

  • Chiarelli F, Gaspari S, Marcovecchio ML (2009) Role of growth factors in diabetic kidney disease. Horm Metab Res 41:585–593

    Article  PubMed  CAS  Google Scholar 

  • Chin BY, Mohsenin A, Li SX, Choi AM, Choi ME (2001) Stimulation of pro-alfa1(I) collagen by TGF-beta1 in mesangial cells: role of the p38 MAPK pathway. Am J Physiol Renal Physiol 280:F495–F504

    PubMed  CAS  Google Scholar 

  • Cogan MG (1980) Medical Staff Conference. Tubulo-interstitial nephropathies—a pathophysiologic approach. West J Med 132:134–140

    PubMed  CAS  Google Scholar 

  • Cortes P, Riser BL, Yee J, Narins RG (1999) Mechanical strain of glomerular mesangial cells in the pathogenesis of glomerulosclerosis: clinical implications. Nephrol Dial Transplant 14:1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Couser WG (1998) Pathogenesis of glomerular damage in glomerulonephritis. Nephrol Dial Transplant 13:10–15

    Article  PubMed  Google Scholar 

  • Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P (2003) Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 52:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG (2010) TGFβ enforces activation of eukaryotic elongation factor-2 (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy. FEBS Lett 584:4268–4272

    Article  PubMed  CAS  Google Scholar 

  • De Vecchi AF, Dratwa M, Wiedemann ME (1999) Healthcare systems and end-stage renal disease (ESRD) therapies—an international review: costs and reimbursement/funding of ESRD therapies. Nephrol Dial Transplant 14 (Suppl 6):31–41

    Article  PubMed  Google Scholar 

  • Diamond JR, Ricardo SD, Klahr S (1998) Mechanisms of interstitial fibrosis in obstructive nephropathy. Semin Nephrol 18:594–602

    PubMed  CAS  Google Scholar 

  • Diez-Marques L, Ortega-Velazquez R, Langa C, Rodríguez-Barbero A, López-Novoa JM, Lamas S, Bernabeu C (2002) Expression of endoglin in human mesangial cells: modulation of extracellular matrix synthesis. Biochim Biophys Acta 1587:36–44

    PubMed  CAS  Google Scholar 

  • Ding G, Pesek-Diamond I, Diamond JR (1993) Cholesterol, macrophages, and gene expression of TGF-β1 and fibronectin during nephrosis. Am J Physiol Renal Physiol 264:F577–F584

    CAS  Google Scholar 

  • Ding G, Reddy K, Kapasi AA, Franki N, Gibbons N, Kasinath BS, Singhal PC (2002) Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am J Physiol Renal Physiol 283:F173–F180

    PubMed  CAS  Google Scholar 

  • Docherty NG, O'Sullivan OE, Healy DA, Murphy M, O'Neill AJ, Fitzpatrick JM, Watson RW (2006) TGF-beta1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation. Am J Physiol Renal Physiol 290:F1202–F1212

    Article  PubMed  CAS  Google Scholar 

  • Dorado F, Velasco S, Esparís-Ogando A, Pericacho M, Pandiella A, Silva J, López-Novoa JM, Rodríguez-Barbero A (2008) The mitogen-activated protein kinase Erk5 mediates human mesangial cell activation. Nephrol Dial Transplant 23:3403–3411

    Article  PubMed  CAS  Google Scholar 

  • Eddy AA (1996) Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 7:2495–2508

    PubMed  CAS  Google Scholar 

  • Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301

    Article  PubMed  CAS  Google Scholar 

  • Esteban V, Ruperez M, Vita JR, López ES, Mezzano S, Plaza JJ, Egido J, Ruiz-Ortega M (2003) Effect of simultaneous blockade of AT1 and AT2 receptors on the NFkappaB pathway and renal inflammatory response. Kidney Int Suppl 86:S33-S38

    Article  PubMed  CAS  Google Scholar 

  • Fogo AB, Kon V (2010) The glomerulus—a view from the inside—the endothelial cell. Int J Biochem Cell Biol 42:1388–1397

    Article  PubMed  CAS  Google Scholar 

  • García-Sánchez O, López-Hernández FJ, López-Novoa JM (2010) An integrative view on the role of TGF-β in the progressive tubular deletion associated with chronic kidney disease. Kidney Int 77:950–955

    Article  PubMed  CAS  Google Scholar 

  • Gharaee-Kermani M, Wiggins R, Wolber F, Goyal M, Phan SH (1996) Fibronectin is the major fibroblast chemoattractant in rabbit anti-glomerular basement membrane disease. Am J Pathol 148:961–967

    PubMed  CAS  Google Scholar 

  • Gonzalez-Avila G, Vadillo-Ortega F, Perez-Tamayo R (1988) Experimental diffuse interstitial renal fibrosis. A biochemical approach. Lab Invest 59:245–252

    PubMed  CAS  Google Scholar 

  • Gould SE, Day M, Jones SS, Dorai H (2002) BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 61:51–60

    Article  PubMed  CAS  Google Scholar 

  • Goumans MJ, Zonneveld AJ van, Dijke P ten (2008) Transforming growth factor beta-induced endothelial-to-mesenchymal transition: a switch to cardiac fibrosis? Trends Cardiovasc Med 18:293–298

    Article  PubMed  CAS  Google Scholar 

  • Grande MT, López-Novoa JM (2009) Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 5:319–328

    Article  PubMed  CAS  Google Scholar 

  • Grande MT, Fuentes-Calvo I, Arévalo M, Heredia F, Santos E, Martínez-Salgado C, Rodríguez-Puyol D, Nieto MA, López-Novoa JM (2010a) Targeted disruption of H-Ras decreases renal fibrosis after ureteral obstruction in mice. Kidney Int 77:509–518

    Article  PubMed  CAS  Google Scholar 

  • Grande MT, Perez-Barriocanal F, López-Novoa JM (2010b) Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) 22:19

    Article  CAS  Google Scholar 

  • Gruden G, Zonca S, Hayward A, Thomas S, Maestrini S, Gnudi L, Viberti GC (2000) Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes 49:655–661

    Article  PubMed  CAS  Google Scholar 

  • Hayashida T, Poncelet AC, Hubchak SC, Schnaper HW (1999) TGF-β1 activates MAP kinases in human mesangial cells: a possible role in collagen expression. Kidney Int 56:1710–1720

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg R, Wang S, Mitu GM (2008) Functional symbiosis between endothelium and epithelial cells in glomeruli. Cell Tissue Res 331:485–493

    Article  PubMed  Google Scholar 

  • Hoffman BB, Sharma K, Ziyadeh FN (1998) Potential role of TGF-beta in diabetic nephropathy. Miner Electrolyte Metab 24:190–196

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Duffield JS, Bonventre JV (2006) Renal stem cells in recovery from acute kidney injury. Minerva Urol Nefrol 58:329–337

    PubMed  CAS  Google Scholar 

  • Huwiler A, Pfeilschifter J (1994) Transforming growth factor β2 stimulates acute and chronic activation of the mitogen-activated protein kinase cascade in rat renal mesangial cells. FEBS Lett 354:255–258

    Article  PubMed  CAS  Google Scholar 

  • Ichinose K, Maeshima Y, Yamamoto Y, Kitayama H, Takazawa Y, Hirokoshi K (2005) Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes 54:2891–2903

    Article  PubMed  CAS  Google Scholar 

  • Iglesias-de la Cruz MC, Ziyadeh FN, Isono M, Kouahou M, Han DC, Kalluri R, Mundel P, Chen S (2002) Effects of high glucose and TGF-beta1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int 62:901–913

    Article  PubMed  CAS  Google Scholar 

  • Inoki K, Haneda M, Ishida T, Mori H, Maeda S, Koya D, Sugimoto T, Kikkawa R (2000) Role of mitogen-activated protein kinases as downstream effectors of transforming growth factor-β in mesangial cells. Kidney Int Suppl 77:S76–S80

    Article  PubMed  CAS  Google Scholar 

  • Isaka Y, Fujiwara Y, Ueda N, Kaneda Y, Kamada T, Imai E (1993) Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney. J Clin Invest 92:2597–2601

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 53:853–861

    Article  PubMed  CAS  Google Scholar 

  • Kisseleva T, Brenner DA (2008) Fibrogenesis of parenchymal organs. Proc Am Torac Soc 5:338–342

    Article  Google Scholar 

  • Kitamura M, Suto TS (1997) TGF-β and glomerulonephritis: anti-inflammatory versus prosclerotic actions. Nephrol Dial Transplant 12:669–679

    Article  PubMed  CAS  Google Scholar 

  • Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Bottinger EP, Klotman PE, Thorgeirsson SS (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74:991–1003

    PubMed  CAS  Google Scholar 

  • Kriz W, Kaissling B, Le Hir M (2011) Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 121:468–474

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90:770–774

    Article  PubMed  CAS  Google Scholar 

  • Lebrin F, Deckers M, Bertolino P, ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65:599–608

    Article  PubMed  CAS  Google Scholar 

  • Lee HS (2011) Pathogenic role of TGF-β in the progression of podocyte diseases. Histol Histopathol 26:107–116

    PubMed  Google Scholar 

  • Lee LK, Meyer TM, Pollock AS, Lovett DH (1995) Endothelial cell injury initiates glomerular sclerosis in the rat remnant kidney. J Clin Invest 96:953–964

    Article  PubMed  CAS  Google Scholar 

  • Lenda DM, Kikawada E, Stanley ER, Kelley VR (2003) Reduced macrophage recruitment, proliferation, and activation in colony-stimulating factor-1-deficient mice results in decreased tubular apoptosis during renal inflammation. J Immunol 170:3254–3262

    PubMed  CAS  Google Scholar 

  • Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-β. Annu Rev Immunol 16:137–161

    Article  PubMed  CAS  Google Scholar 

  • Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y, Yamamoto H, Bertram JF (2010) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–2624

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Tan X, Dai C, Stolz DB, Wang D, Liu Y (2009) Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 20:1907–1918

    Article  PubMed  CAS  Google Scholar 

  • Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  PubMed  CAS  Google Scholar 

  • López-Novoa JM, Bernabeu C (2010) The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 299:H959–H974

    Article  PubMed  CAS  Google Scholar 

  • López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314

    Article  PubMed  CAS  Google Scholar 

  • López-Novoa JM, Martínez-Salgado C, Rodríguez-Peña AB, López-Hernández FJ (2010) Common pathophysiological mechanisms of chronic kidney disease: therapeutic perspectives. Pharmacol Ther 128:61–81

    Article  PubMed  CAS  Google Scholar 

  • López-Novoa JM, Rodríguez-Peña AB, Ortiz A, Martínez-Salgado C, López-Hernández FJ (2011) Etiopathology of chronic tubular, glomerular and renovascular nephropathies: clinical implications. J Transl Med 9:13

    Article  PubMed  Google Scholar 

  • MacKay K, Striker LJ, Stauffer JW, Doi T, Agodoa LY, Striker GE (1989) Transforming growth factor-beta. Murine glomerular receptors and responses of isolated glomerular cells. J Clin Invest 83:1160–1167

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Salgado C, Rodríguez-Peña AB, López-Novoa JM (2008) Involvement of small Ras GTPases and their effectors in chronic renal disease. Cell Mol Life Sci 65:477–492

    Article  PubMed  CAS  Google Scholar 

  • Massagué J (1990) The transforming growth factor-family. Annu Rev Cell Biol 6:597–641

    Article  PubMed  Google Scholar 

  • Massagué J, Chen YG (2000) Controlling TGF-β signaling. Genes Dev 14:627–644

    PubMed  Google Scholar 

  • McKay NG, Khong TF, Haites NE, Power DA (1993) The effect of transforming growth factor-1 on mesangial cell fibronectin synthesis: increased incorporation into the extracellular matrix and reduced pI but no effect on alternative splicing. Exp Mol Pathol 59:211–224

    Article  PubMed  CAS  Google Scholar 

  • Meldrum KK, Metcalfe P, Leslie JA, Misseri R, Hile KL, Meldrum DR (2006) TNF-alpha neutralization decreases nuclear factor-kappaB activation and apoptosis during renal obstruction. J Surg Res 131:182–188

    Article  PubMed  CAS  Google Scholar 

  • Misseri R, Meldrum DR, Dinarello CA, Dagher P, Hile KL, Rink RC, Meldrum KK (2005) TNF-alpha mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling. Am J Physiol Renal Physiol 288:F406–F411

    Article  PubMed  CAS  Google Scholar 

  • Miyajima A, Chen J, Lawrence C, Ledbetter S, Soslow RA, Stern J, Jha S, Pigato J, Lemer ML, Poppas DP, Vaughan ED, Felsen D (2000) Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int 58:2301–2313

    Article  PubMed  CAS  Google Scholar 

  • Mozes MM, Böttinger EP, Jacot TA, Kopp JB (1999) Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. J Am Soc Nephrol 10:271–280

    PubMed  CAS  Google Scholar 

  • Nam BY, Paeng J, Kim SH, Lee SH, Kim DH, Kang HY, Li JJ, Kwak SJ, Park JT, Yoo TH, Han SH, Kim DK, Kang SW (2011) The MCP-1/CCR2 axis in podocytes is involved in apoptosis induced by diabetic conditions. Apoptosis (in press)

  • Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17

    PubMed  CAS  Google Scholar 

  • Navar LG (2009) Glomerular permeability: a never-ending saga. Am J Physiol Renal Physiol 296:F1266–F1268

    Article  PubMed  CAS  Google Scholar 

  • Norman JT, Fine LG (1999) Progressive renal disease: fibroblasts, extracellular matrix, and integrins. Exp Nephrol 7:167–177

    Article  PubMed  CAS  Google Scholar 

  • Nyengaard JR, Rasch R (1993) The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes. Diabetologia 36:189–194

    Article  PubMed  CAS  Google Scholar 

  • Okoń K, Sułowicz W, Smoleński O, Sydor A, Chruściel B, Kirker-Nowak A, Rosiek Z, Sysło K, Stachura J (2007) Interstitial, tubular and vascular factors in progression of primary glomerulonephritis. Pol J Pathol 58:73–78

    PubMed  Google Scholar 

  • Poncelet AC, Schnaper HW (1998) Regulation of mesangial cell collagen turnover by transforming growth factor-beta1. Am J Physiol Renal Physiol 275:F458–F466

    CAS  Google Scholar 

  • Poncelet AC, Caestecker MP de, Schnaper HW (1999) The TGF-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int 56:1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Regoli M, Bendayan M (1997) Alterations in the expression of the alpha 3 beta1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia 40:15–22

    Article  PubMed  CAS  Google Scholar 

  • Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116:288–296

    Article  PubMed  CAS  Google Scholar 

  • US Renal Data System (2002) Annual Data Report: Atlas of end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

    Google Scholar 

  • Roberts AB, McCune BK, Sporn MB (1992) TGF-beta: regulation of extracellular matrix. Kidney Int 41:557–559

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Barbero A, Obreo J, Eleno N, Rodríguez-Peña A, Düwel A, Jerkic M, Sánchez-Rodríguez A, Bernabéu C, López-Novoa JM (2001) Endoglin expression in human and rat mesangial cells and its upregulation by TGF-beta1. Biochem Biophys Res Commun 282:142–147

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Barbero A, Dorado F, Velasco S, Pandiella A, Banas B, López-Novoa JM (2006) TGF-beta1 induces COX-2 expression and PGE2 synthesis through MAPK and PI3K pathways in human mesangial cells. Kidney Int 70:901–909

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Peña A, Prieto M, Duwel A, Rivas JV, Eleno N, Pérez-Barriocanal F, Arévalo M, Smith JD, Vary CP, Bernabeu C, López-Novoa JM (2001) Up-regulation of endoglin, a TGF-beta-binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. Nephrol Dial Transplant 16 (Suppl 1):34–39

    PubMed  Google Scholar 

  • Rodríguez-Peña A, Eleno N, Düwell A, Arévalo M, Pérez-Barriocanal F, Flores O, Docherty N, Bernabeu C, Letarte M, López-Novoa JM (2002) Endoglin upregulation during experimental renal interstitial fibrosis in mice. Hypertension 40:713–720

    Article  PubMed  Google Scholar 

  • Rodríguez-Peña AB, Grande MT, Eleno N, Arévalo M, Guerrero C, Santos E, López-Novoa JM (2008) Activation of Erk1/2 and Akt following unilateral ureteral obstruction. Kidney Int 74:196–209

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Lorenzo O, Ruperez M, Blanco J, Egido J (2001) Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT(1) and AT(2) receptors. Am J Pathol 158:1743–1756

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Rupérez M, Esteban V, Rodríguez-Vita J, Sánchez-López E, Carvajal G, Egido J (2006) Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 21:16–20

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494

    PubMed  CAS  Google Scholar 

  • Schiffer M, Bitzer M, Roberts IS, Kopp JB, Dijke P ten, Mundel P, Bottinger EP (2001) Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 108:807–816

    PubMed  CAS  Google Scholar 

  • Schlöndorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Schnaper HW, Jandeska S, Runyan CE, Hubchak SC, Basu RK, Curley JF, Smith RD, Hayashida T (2009) TGF-β signal transduction in chronic kidney disease. Front Biosci 14:2448–2465

    Article  PubMed  CAS  Google Scholar 

  • Schull MMI, Ormsby I, Kier AM, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata M, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-b1 gene results in multifocal inflammatory disease. Nature (Lond) 359:693–699

    Article  Google Scholar 

  • Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephritic syndrome in mice lacking CD2-associated protein. Science 286:312–315

    Article  PubMed  CAS  Google Scholar 

  • Siegel PM, Massagué J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–820

    Article  PubMed  CAS  Google Scholar 

  • Sinuani I, Beberashvili I, Averbukh Z, Cohn M, Gitelman I, Weissgarten J (2010) Mesangial cells initiate compensatory tubular cell hypertrophy. Am J Nephrol 31:326–331

    Article  PubMed  CAS  Google Scholar 

  • Srivastava T, Garola RE, Whiting JM, Alon US (2001) Synaptopodin expression in idiopathic nephrotic syndrome of childhood. Kidney Int 59:118–125

    Article  PubMed  CAS  Google Scholar 

  • Steffes MW, Schmidt D, McCrery R, Basgen JM (2001) Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int 59:2104–2113

    PubMed  CAS  Google Scholar 

  • Strutz F, Neilson EG (2003) New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol 24:459–476

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Ebihara I, Tomino Y, Koide H (1993) Transcriptional activation of matrix genes by transforming growth factor beta1 in mesangial cells. Exp Nephrol 1:229–237

    PubMed  CAS  Google Scholar 

  • Tamaki K, Okuda S (2003) Role of TGF-β in the progression of renal fibrosis. Contrib Nephrol 139:44–65

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Schiemann WP (2009) The TGF-beta paradox in human cancer: an update. Future Oncol 5:259–271

    Article  PubMed  CAS  Google Scholar 

  • Urushihara M, Takamatsu M, Shimizu M, Kondo S, Kinoshita Y, Suga K, Kitamura A, Matsuura S, Yoshizumi M, Tamaki T, Kawachi H, Kagami S (2010) ERK5 activation enhances mesangial cell viability and collagen matrix accumulation in rat progressive glomerulonephritis. Am J Physiol Renal Physiol 298:F167–F176

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet A, Baelde HJ, Vleming LJ, Heer E de, Bruijn JA (2001) Distribution of fibronectin isoforms in human renal disease. J Pathol 193:256–262

    Article  PubMed  Google Scholar 

  • Vleming LJ, Bruijn JA, Es LA van (1999) The pathogenesis of progressive renal failure. Neth J Med 54:114–128

    Article  PubMed  CAS  Google Scholar 

  • Wahab NA, Weston BS, Roberts T, Mason RM (2002) Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy. J Am Soc Nephrol 13:2437–2445

    Article  PubMed  CAS  Google Scholar 

  • Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB (1987) Transforming growth factor type β induces monocyte chemotaxis and growth factor production. Pro Natl Acad Sci USA 84:5788–5792

    Article  CAS  Google Scholar 

  • Wang S-N, LaPage J, Hirschberg R (2000) Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int 57:1002–1014

    Article  PubMed  CAS  Google Scholar 

  • Weston BS, Wahab NA, Mason RM (2003) CTGF mediates TGF-β-induced fibronectin matrix deposition by upregulating active α5β1 integrin in human mesangial cells. J Am Soc Nephrol 14:601–610

    Article  PubMed  CAS  Google Scholar 

  • Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin–induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16:2941–2952

    Article  PubMed  CAS  Google Scholar 

  • Wolf G (1998) Link between angiotensin II and TGF-beta in the kidney. Miner Electrolyte Metab 24:174–180

    Article  PubMed  CAS  Google Scholar 

  • Wolf G (2006) Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-β pathway. Kidney Int 70:1914–1919

    PubMed  CAS  Google Scholar 

  • Wolf G, Chen S, Ziyadeh FN (2005) From the periphery of glomerular capillary wall toward the center of the disease. Podocyte injury comes on age in diabetic nephropathy. Diabetes 54:1626–1634

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Law BK, Chytil AM et al (2004) Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 6:603–610

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Maeshima Y, Kitayama H, Kitamura S, Takazawa Y, Sugiyama H (2004) Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53:1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Takemura T, Murakami K, Okada M, Hino S, Miyamoto H, Maki S (1993) Transforming growth factor-β protein and mRNA in glomeruli in normal and diseased human kidneys. Lab Invest 68:154–163

    PubMed  CAS  Google Scholar 

  • Zavadil J, Böttinger EP (2005) TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg M, Kalluri R (2008) Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol 23:1395–1398

    Article  PubMed  Google Scholar 

  • Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287

    Article  PubMed  Google Scholar 

  • Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, Penninger JM, Scholey JW, Kassiri Z, Oudit GY (2011) Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme. Hypertension 57:314–322

    Article  PubMed  CAS  Google Scholar 

  • Ziyadeh FN (2008) Different roles for TGF-beta and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy. Diabetes Res Clin Pract 82 (Suppl 1):S38–S41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. López-Novoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Hernández, F.J., López-Novoa, J.M. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347, 141–154 (2012). https://doi.org/10.1007/s00441-011-1275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1275-6

Keywords

Navigation