Skip to main content

Advertisement

Log in

TRPV1 activation prevents high-salt diet-induced nocturnal hypertension in mice

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

High dietary salt-caused hypertension is associated with increasing reactive oxygen species generation and reduced nitric oxide (NO) bioavailability. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, is proposed to be involved in Dahl salt-sensitive hypertension, as determined in acute or short-term experiments. However, it remains unknown whether activation of TRPV1 by dietary capsaicin could prevent the vascular oxidative stress and hypertension induced by a high-salt diet. Here, we report that consumption of a high-salt diet blunted endothelium-dependent relaxation in mesenteric resistance arteries and elevated nocturnal blood pressure in mice. These effects were associated with increased superoxide anion generation and reduced NO levels in mesenteric vessels in mice on a high-salt diet. However, chronic administration of capsaicin reduced the high-salt diet-induced endothelial dysfunction and nocturnal hypertension in part by preventing the generation of superoxide anions and NO reduction of mesenteric arteries through vascular TRPV1 activation. Our findings provide new insights into the role of TRPV1 channels in the long-term regulation of blood pressure in response to high-salt intake. TRPV1 activation through chronic dietary capsaicin may represent a promising lifestyle intervention in populations with salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anandakumar P, Kamaraj S, Jagan S et al (2008) Capsaicin modulates pulmonary antioxidant defense system during benzo(a)pyrene-induced lung cancer in Swiss albino mice. Phytother Res 22:529–533

    Article  CAS  PubMed  Google Scholar 

  2. Banday AA, Muhammad AB, Fazili FR et al (2007) Mechanisms of oxidative stress-induced increase in salt sensitivity and development of hypertension in Sprague-Dawley rats. Hypertension 49:664–671

    Article  CAS  PubMed  Google Scholar 

  3. Bo H, Jiang N, Ma G et al (2008) Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Biol Med 44:1373–1381

    Article  CAS  PubMed  Google Scholar 

  4. Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68:26–36

    Article  CAS  PubMed  Google Scholar 

  5. Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  6. Cook NR, Cutler JA, Obarzanek E et al (2007) Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334:885–888

    Article  PubMed  Google Scholar 

  7. Crofton JT, Share L, Wang BC et al (1980) Pressor responsiveness to vasopressin in the rat with DOC-salt hypertension. Hypertension 2:424–431

    CAS  PubMed  Google Scholar 

  8. Datla SR, Griendling KK (2010) Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension 56:325–330

    Article  CAS  PubMed  Google Scholar 

  9. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  PubMed  Google Scholar 

  10. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  11. Ettarh RR, Odigie IP, Adigun SA (2002) Vitamin C lowers blood pressure and alters vascular responsiveness in salt-induced hypertension. Can J Physiol Pharmacol 80:1199–1202

    Article  CAS  PubMed  Google Scholar 

  12. Farah V, Elased KM, Chen Y et al (2006) Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 130:41–50

    Article  CAS  PubMed  Google Scholar 

  13. Forstermann U (2010) Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 459:923–939

    Article  PubMed  Google Scholar 

  14. Fujii T, Uzu T, Nishimura M et al (1999) Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis 33:29–35

    Article  CAS  PubMed  Google Scholar 

  15. Fujita M, Ando K, Nagae A et al (2007) Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension. Hypertension 50:360–367

    Article  CAS  PubMed  Google Scholar 

  16. Fungers A, Kaiser K, Martini P (1958) Relation of essential hypertension to sodium chloride. I. Clinical & experimental animal experiments on the dependence of high blood pressure in essential hypertension on the quantity of sodium chloride; salt water hypertension in rats. Dtsch Arch Klin Med 204:603–623

    CAS  PubMed  Google Scholar 

  17. Ibi M, Matsuno K, Shiba D et al (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28:9486–9494

    Article  CAS  PubMed  Google Scholar 

  18. Intersalt Cooperative Research Group (1988) Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ 297:319–328

    Google Scholar 

  19. Joe B, Lokesh BR (1994) Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224:255–263

    Article  CAS  PubMed  Google Scholar 

  20. Kempaiah RK, Srinivasan K (2004) Influence of dietary curcumin, capsaicin and garlic on the antioxidant status of red blood cells and the liver in high-fat-fed rats. Ann Nutr Metab 48:314–320

    Article  CAS  PubMed  Google Scholar 

  21. Lee CY, Kim M, Yoon SW et al (2003) Short-term control of capsaicin on blood and oxidative stress of rats in vivo. Phytother Res 17:454–458

    Article  CAS  PubMed  Google Scholar 

  22. Luqman S, Rizvi SI (2006) Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress. Phytother Res 20:303–306

    Article  CAS  PubMed  Google Scholar 

  23. Ma S, Ma L, Yang D et al (2010) Uncoupling protein 2 ablation exacerbates high-salt intake-induced vascular dysfunction. Am J Hypertens 23:822–828

    Article  CAS  PubMed  Google Scholar 

  24. McBryde FD, Malpas SC, Guild SJ et al (2009) A high-salt diet does not influence renal sympathetic nerve activity: a direct telemetric investigation. Am J Physiol Regul Integr Comp Physiol 297:R396–R402

    CAS  PubMed  Google Scholar 

  25. Meng S, Cason GW, Gannon AW et al (2003) Oxidative stress in Dahl salt-sensitive hypertension. Hypertension 41:1346–1352

    Article  CAS  PubMed  Google Scholar 

  26. Miyamoto T, Dubin AE, Petrus MJ et al (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS ONE 4:e7596

    Article  PubMed  Google Scholar 

  27. Nishio K, Qiao S, Yamashita H (2005) Characterization of the differential expression of uncoupling protein 2 and ROS production in differentiated mouse macrophage-cells (Mm1) and the progenitor cells (M1). J Mol Histol 36:35–44

    Article  CAS  PubMed  Google Scholar 

  28. Nurkiewicz TR, Boegehold MA (2007) High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 292:R1550–R1556

    CAS  PubMed  Google Scholar 

  29. Penner SB, Campbell NR, Chockalingam A et al (2007) Dietary sodium and cardiovascular outcomes: a rational approach. Can J Cardiol 23:567–572

    PubMed  Google Scholar 

  30. Sharif Naeini R, Witty MF, Seguela P et al (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 9:93–98

    Article  PubMed  Google Scholar 

  31. Song WZ, Chen AF, Wang DH (2004) Increased salt sensitivity induced by sensory denervation: role of superoxide. Acta Pharmacol Sin 25:1626–1632

    CAS  PubMed  Google Scholar 

  32. Soundararajan R, Pearce D, Hughey RP et al (2010) Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem 285:30363–30369

    Article  CAS  PubMed  Google Scholar 

  33. Tajima Y, Ichikawa S, Sakamaki T et al (1983) Body fluid distribution in the maintenance of DOCA-salt hypertension in rats. Am J Physiol 244:H695–H700

    CAS  PubMed  Google Scholar 

  34. Taylor NE, Glocka P, Liang M et al (2006) NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats. Hypertension 47:692–698

    Article  CAS  PubMed  Google Scholar 

  35. Tian W, Fu Y, Wang DH et al (2006) Regulation of TRPV1 by a novel renally expressed rat TRPV1 splice variant. Am J Physiol-Renal 290:F117–F126

    Article  CAS  Google Scholar 

  36. Touyz RM, Schiffrin EL (2004) Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122:339–352

    Article  CAS  PubMed  Google Scholar 

  37. Uzu T, Kazembe FS, Ishikawa K et al (1996) High sodium sensitivity implicates nocturnal hypertension in essential hypertension. Hypertension 28:139–142

    CAS  PubMed  Google Scholar 

  38. Uzu T, Kimura G, Yamauchi A et al (2006) Enhanced sodium sensitivity and disturbed circadian rhythm of blood pressure in essential hypertension. J Hypertens 24:1627–1632

    Article  CAS  PubMed  Google Scholar 

  39. Uzu T, Sakaguchi M, Yokomaku Y et al (2009) Effects of high sodium intake and diuretics on the circadian rhythm of blood pressure in type 2 diabetic patients treated with an angiotensin II receptor blocker. Clin Exp Nephrol 13:300–306

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Chen AF, Wang DH (2006) Enhanced oxidative stress in kidneys of salt-sensitive hypertension: role of sensory nerves. Am J Physiol Heart Circ Physiol 291:H3136–H3143

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Wang DH (2006) A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1. Hypertension 47:609–614

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe E, Hiyama TY, Shimizu H et al (2006) Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol 290:R568–R576

    CAS  PubMed  Google Scholar 

  43. Wind S, Beuerlein K, Armitage ME et al (2010) Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension 56:490–497

    Article  CAS  PubMed  Google Scholar 

  44. Yang D, Luo Z, Ma S et al (2010) Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab 12:130–141

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida T, Inoue R, Morii T et al (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  CAS  PubMed  Google Scholar 

  46. Zhu J, Huang T, Lombard JH (2007) Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries. J Vasc Res 44:382–390

    Article  CAS  PubMed  Google Scholar 

  47. Zhu Y, Wang DH (2008) Segmental regulation of sodium and water excretion by TRPV1 activation in the kidney. J Cardiovasc Pharmacol 51:437–442

    Article  CAS  PubMed  Google Scholar 

  48. Zhu Y, Wang Y, Wang DH (2005) Diuresis and natriuresis caused by activation of VR1-positive sensory nerves in renal pelvis of rats. Hypertension 46:992–997

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lijuan Wang (Chongqing Institute of Hypertension, China) for technical assistance. This research was supported by grants from the National Natural Science Foundation of China (30890042) and the National Basic Research Program of China (2011CB503902).

Conflict of interest

The authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Zhu.

Additional information

Xinzhong Hao and Jing Chen contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, X., Chen, J., Luo, Z. et al. TRPV1 activation prevents high-salt diet-induced nocturnal hypertension in mice. Pflugers Arch - Eur J Physiol 461, 345–353 (2011). https://doi.org/10.1007/s00424-011-0921-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0921-x

Keywords

Navigation