Skip to main content

Advertisement

Log in

Impact of body composition on pharmacokinetics of doxorubicin in children: a Glaser Pediatric Research Network study

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We studied the relationship between doxorubicin pharmacokinetics and body composition in children with cancer.

Patients and methods

Children between 1 and 21 years of age, receiving doxorubicin as an infusion of any duration <24 h on either a 1-day or 2-day schedule were eligible if they had no significant abnormality of liver function tests, their dose of doxorubicin was not based on ideal body weight or otherwise “capped,” and they weighed ≥12 kg. Body composition was measured by dual-energy X-ray absorptiometry. Doxorubicin and doxorubicinol concentration in plasma were measured by high pressure liquid chromatography. NONMEM was used to perform pharmacokinetic model fitting and S-PLUS was used to perform a post hoc analysis to examine the effect of body composition on pharmacokinetic parameters.

Results

Twenty-two subjects (16 male; 10 Hispanic, 10 Caucasian, 2 Asian) completed the study. The median age was 15.0 years (range 3.3–21.5), median weight was 51.5 kg (range 12.4–80), median BMI was 19.7 (range 13.2–30.0), and median body fat was 25% (range 15–36). The population mean clearance of doxorubicin was 420 ml/min/m2. Doxorubicinol but not doxorubicin clearance was lower in patients with body fat greater than 30%.

Conclusions

Doxorubicinol clearance is decreased in children with >30% body fat. This finding is potentially important clinically, because doxorubicinol may contribute significantly to cardiac toxicity after doxorubicin administration. Further study of the body composition on doxorubicin and doxorubicinol pharmacokinetics and on clinical outcomes is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asayama K, Ozeki T, Sugihara S, Ito K, Okada T, Tamai H, Takaya R, Hanaki K, Murata M (2003) Criteria for medical intervention in obese children: a new definition of ‘obesity disease’ in Japanese children. Pediatr Int 45:642–646

    Article  PubMed  Google Scholar 

  2. Baker SD, Verweij J, Rowinsky EK, Donehower RC, Schellens JH, Grochow LB, Sparreboom A (2002) Role of body surface area in dosing of investigational anticancer agents in adults, 1991–2001. J Natl Cancer Inst 94:1883–1888

    PubMed  CAS  Google Scholar 

  3. Berg S, Cowan K, Balis F et al (1994) Pharmacokinetics of Taxol and Doxorubicin administered alone and in combination by continuous 72-hour infusion. J Natl Cancer Inst 86:143–145

    Article  PubMed  CAS  Google Scholar 

  4. Bosma RJ, van der Heide JJ, Oosterop EJ, de Jong PE, Navis G (2004) Body mass index is associated with altered renal hemodynamics in non-obese healthy subjects. Kidney Int 65:259–265

    Article  PubMed  Google Scholar 

  5. Boucek RJ Jr, Olson RD, Brenner DE, Ogunbunmi EM, Inui M, Fleischer S (1987) The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem 262:15851–15856

    PubMed  CAS  Google Scholar 

  6. Callies S, de Alwis DP, Wright JG, Sandler A, Burgess M, Aarons L (2003) A population pharmacokinetic model for doxorubicin and doxorubicinol in the presence of a novel MDR modulator, zosuquidar trihydrochloride (LY335979). Cancer Chemother Pharmacol 51:107–118

    PubMed  CAS  Google Scholar 

  7. Camaggi CM, Comparsi R, Strocchi E, Testoni F, Angelelli B, Pannuti F (1988) Epirubicin and doxorubicin comparative metabolism and pharmacokinetics. A cross-over study. Cancer Chemother Pharmacol 21:221–228

    PubMed  CAS  Google Scholar 

  8. Canal P, Chatelut E, Guichard S (1998) Practical guide for dose individualisation in cancer chemotherapy. Drugs 56:1019–1038

    Article  PubMed  CAS  Google Scholar 

  9. Cheymol G (2000) Effects of obesity on pharmacokinetics. Clin Pharmacokinet 39:215–231

    Article  PubMed  CAS  Google Scholar 

  10. Chinn S (2006) Definitions of childhood obesity: current practice. Eur J Clin Nutr 60:1189–1194

    Article  PubMed  CAS  Google Scholar 

  11. Cindik N, Baskin E, Agras PI, Kinik ST, Turan M, Saatci U (2005) Effect of obesity on inflammatory markers and renal functions. Acta Paediatr 94:1732–1737

    Article  PubMed  Google Scholar 

  12. Colleoni M, Li S, Gelber RD, Price KN, Coates AS, Castiglione-Gertsch M, Goldhirsch A (2005) Relation between chemotherapy dose, oestrogen receptor expression, and body-mass index. Lancet 366:1108–1110

    Article  PubMed  CAS  Google Scholar 

  13. Crom W, Riley C, Green A et al (1983) Doxorubicin disposition in children and adolescents with cancer. Drug Intell Clin Pharm 17:448

    Google Scholar 

  14. Csernus K, Lanyi E, Erhardt E, Molnar D (2005) Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr 164:44–49

    Article  PubMed  CAS  Google Scholar 

  15. Cusack BJ, Young SP, Driskell J, Olson RD (1993) Doxorubicin and doxorubicinol pharmacokinetics and tissue concentrations following bolus injection and continuous infusion of doxorubicin in the rabbit. Cancer Chemother Pharmacol 32:53–58

    Article  PubMed  CAS  Google Scholar 

  16. Dobbs N, James C (1987) Estimation of doxorubicin and doxorubicinol by high performance liquid chromatography and advanced automated sample processor. J Chromatogr Biomed Appl 420:184–188

    Article  CAS  Google Scholar 

  17. Doroshow JH (1996) Anthracyclines and anthracenediones. In: Chabner BA, Longo DL (eds) Cancer chemotherapy and biotherapy principles and practice. Lippincott-Raven, Philadelphia, pp 409–434

    Google Scholar 

  18. Eksborg S, Palm C, Bjork O (2000) A comparative pharmacokinetic study of doxorubicin and 4′-epi-doxorubicin in children with acute lymphocytic leukemia using a limited sampling procedure. Anticancer Drugs 11:129–136

    Article  PubMed  CAS  Google Scholar 

  19. Fleming R, Eldridge R, Johnson C, Stewart C (1991) Disposition of high-dose methotrexate in an obese cancer patient. Cancer 68:1247–1250

    Article  PubMed  CAS  Google Scholar 

  20. Forrest GL, Gonzalez B, Tseng W, Li X, Mann J (2000) Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res 60:5158–5164

    PubMed  CAS  Google Scholar 

  21. Frost BM, Eksborg S, Bjork O, Abrahamsson J, Behrendtz M, Castor A, Forestier E, Lonnerholm G (2002) Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol 38:329–337

    Article  PubMed  Google Scholar 

  22. Gelber RP, Kurth T, Kausz AT, Manson JE, Buring JE, Levey AS, Gaziano JM (2005) Association between body mass index and CKD in apparently healthy men. Am J Kidney Dis 46:871–880

    Article  PubMed  Google Scholar 

  23. Georgiadis MS, Steinberg SM, Hankins LA, Ihde DC, Johnson BE (1995) Obesity and therapy-related toxicity in patients treated for small-cell lung cancer. J Natl Cancer Inst 87:361–366

    Article  PubMed  CAS  Google Scholar 

  24. Gibbs JP, Gooley T, Corneau B, Murray G, Stewart P, Appelbaum FR, Slattery JT (1999) The impact of obesity and disease on busulfan oral clearance in adults. Blood 93:4436–4440

    PubMed  CAS  Google Scholar 

  25. Green B, Duffull SB (2004) What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol 58:119–133

    Article  PubMed  Google Scholar 

  26. Griggs JJ, Sorbero ME, Lyman GH (2005) Undertreatment of obese women receiving breast cancer chemotherapy. Arch Intern Med 165:1267–1273

    Article  PubMed  Google Scholar 

  27. Gurney H (2002) How to calculate the dose of chemotherapy. Br J Cancer 86:1297–1302

    Article  PubMed  CAS  Google Scholar 

  28. Hempel G, Flege S, Wurthwein G, Boos J (2002) Peak plasma concentrations of doxorubicin in children with acute lymphoblastic leukemia or non-Hodgkin lymphoma. Cancer Chemother Pharmacol 49:133–141

    Article  PubMed  CAS  Google Scholar 

  29. Hijiya N, Panetta JC, Zhou Y, Kyzer EP, Howard SC, Jeha S, Razzouk BI, Ribeiro RC, Rubnitz JE, Hudson MM, Sandlund JT, Pui CH, Relling MV (2006) Body mass index does not influence pharmacokinetics or outcome of treatment in children with acute lymphoblastic leukemia. Blood 108:3997–4002

    Article  PubMed  CAS  Google Scholar 

  30. Joerger M, Huitema AD, Meenhorst PL, Schellens JH, Beijnen JH (2005) Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. Cancer Chemother Pharmacol 55:488–496

    Article  PubMed  CAS  Google Scholar 

  31. Joerger M, Huitema AD, Richel DJ, Dittrich C, Pavlidis N, Briasoulis E, Vermorken JB, Strocchi E, Martoni A, Sorio R, Sleeboom HP, Izquierdo MA, Jodrell DI, Fety R, de Bruijn E, Hempel G, Karlsson M, Tranchand B, Schrijvers AH, Twelves C, Beijnen JH, Schellens JH (2007) Population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients: a study by the EORTC-PAMM-NDDG. Clin Pharmacokinet 46:1051–1068

    Article  PubMed  CAS  Google Scholar 

  32. Lange BJ, Gerbing RB, Feusner J, Skolnik J, Sacks N, Smith FO, Alonzo TA (2005) Mortality in overweight and underweight children with acute myeloid leukemia. JAMA 293:203–211

    Article  PubMed  CAS  Google Scholar 

  33. Lee K, Lee S, Kim SY, Kim SJ, Kim YJ (2007) Percent body fat cutoff values for classifying overweight and obesity recommended by the International Obesity Task Force (IOTF) in Korean children. Asia Pac J Clin Nutr 16:649–655

    PubMed  Google Scholar 

  34. Liew PL, Lee WJ, Lee YC, Wang HH, Wang W, Lin YC (2006) Hepatic histopathology of morbid obesity: concurrence of other forms of chronic liver disease. Obes Surg 16:1584–1593

    Article  PubMed  Google Scholar 

  35. Lind MJ, Margison JM, Cerny T, Thatcher N, Wilkinson PM (1989) Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 25:139–142

    Article  PubMed  CAS  Google Scholar 

  36. Mushlin PS, Cusack BJ, Boucek RJ Jr, Andrejuk T, Li X, Olson RD (1993) Time-related increases in cardiac concentrations of doxorubicinol could interact with doxorubicin to depress myocardial contractile function. Br J Pharmacol 110:975–982

    PubMed  CAS  Google Scholar 

  37. Nanda K (2004) Non-alcoholic steatohepatitis in children. Pediatr Transplant 8:613–618

    Article  PubMed  Google Scholar 

  38. Olson LE, Bedja D, Alvey SJ, Cardounel AJ, Gabrielson KL, Reeves RH (2003) Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res 63:6602–6606

    PubMed  CAS  Google Scholar 

  39. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, Boucek RJ Jr (1988) Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci U S A 85:3585–3589

    Article  PubMed  CAS  Google Scholar 

  40. Palle J, Frost BM, Peterson C, Gustafsson G, Hellebostad M, Kanerva J, Schmiegelow K, Lonnerholm G (2006) Doxorubicin pharmacokinetics is correlated to the effect of induction therapy in children with acute myeloid leukemia. Anticancer Drugs 17:385–392

    Article  PubMed  CAS  Google Scholar 

  41. Poikonen P, Blomqvist C, Joensuu H (2001) Effect of obesity on the leukocyte nadir in women treated with adjuvant cyclophosphamide, methotrexate, and fluorouracil dosed according to body surface area. Acta Oncol 40:67–71

    Article  PubMed  CAS  Google Scholar 

  42. Ribbing J, Jonsson EN (2004) Power, selection bias and predictive performance of the Population Pharmacokinetic Covariate Model. J Pharmacokinet Pharmacodyn 31:109–134

    Article  PubMed  CAS  Google Scholar 

  43. Rodvold KA, Rushing DA, Tewksbury DA (1988) Doxorubicin clearance in the obese. J Clin Oncol 6:1321–1327

    PubMed  CAS  Google Scholar 

  44. Rosner GL, Hargis JB, Hollis DR, Budman DR, Weiss RB, Henderson IC, Schilsky RL (1996) Relationship between toxicity and obesity in women receiving adjuvant chemotherapy for breast cancer: results from cancer and leukemia group B study 8541. J Clin Oncol 14:3000–3008

    PubMed  CAS  Google Scholar 

  45. Santos CA, Boullata JI (2005) An approach to evaluating drug-nutrient interactions. Pharmacotherapy 25:1789–1800

    Article  PubMed  Google Scholar 

  46. Stewart DJ, Grewaal D, Green RM, Mikhael N, Goel R, Montpetit VA, Redmond MD (1993) Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res 13:1945–1952

    PubMed  CAS  Google Scholar 

  47. Wang GX, Wang YX, Zhou XB, Korth M (2001) Effects of doxorubicinol on excitation–contraction coupling in guinea pig ventricular myocytes. Eur J Pharmacol 423:99–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Thrasher Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, P.A., Rosner, G.L., Matthay, K.K. et al. Impact of body composition on pharmacokinetics of doxorubicin in children: a Glaser Pediatric Research Network study. Cancer Chemother Pharmacol 64, 243–251 (2009). https://doi.org/10.1007/s00280-008-0854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0854-z

Keywords

Navigation