Skip to main content
Log in

Quantification of myocardial blood flow with 82Rb dynamic PET imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The PET tracer 82Rb is commonly used to evaluate regional perfusion defects for the diagnosis of coronary artery disease. There is limited information on the quantification of myocardial blood flow and flow reserve with this tracer. The goal of this study was to investigate the use of a one-compartment model of 82Rb kinetics for the quantification of myocardial blood flow.

Methods

Fourteen healthy volunteers underwent rest and dipyridamole stress imaging with both 13N-ammonia and 82Rb within a 2-week interval. Myocardial blood flow was estimated from the time-activity curves measured with 13N-ammonia using a standard two-compartment model. The uptake parameter of the one-compartment model was estimated from the time-activity curves measured with 82Rb. To describe the relationship between myocardial blood flow and the uptake parameter, a nonlinear extraction function was fitted to the data. This function was then used to convert estimates of the uptake parameter to flow estimates. The extraction function was validated with an independent data set obtained from 13 subjects with documented evidence of coronary artery disease (CAD).

Results

The one-compartment model described 82Rb kinetics very well (median R-square = 0.98). The flow estimates obtained with 82Rb were well correlated with those obtained with 13N-ammonia (r = 0.85), and the best-fit line did not differ significantly from the identity line. Data obtained from the subjects with CAD confirmed the validity of the estimated extraction function.

Conclusion

It is possible to obtain accurate estimates of myocardial blood flow and flow reserve with a one-compartment model of 82Rb kinetics and a nonlinear extraction function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tamaki N, Ruddy TD, deKemp R, Beanlands RSB. Myocardial Perfusion. In: Wahl RL, editor. Principles and practice of positron emission tomography. Philadelphia: Lippincott Williams & Wilkins; 2002; p. 320–33.

    Google Scholar 

  2. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography: exploration of a mathematical model. Circulation 1990;82:1377–86.

    PubMed  CAS  Google Scholar 

  3. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701–12.

    PubMed  CAS  Google Scholar 

  4. Huang SC, Williams BA, Krivokapich J, Araujo L, Phelps ME, Schelbert HR. Rabbit myocardial 82Rb kinetics and a compartmental model for blood flow estimation. Am J Physiol 1989;256:H1156–64.

    PubMed  CAS  Google Scholar 

  5. Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 1992;70:496–507.

    PubMed  CAS  Google Scholar 

  6. Coxson PG, Huesman RH, Borland L. Consequences of using a simplified kinetic model for dynamic PET data. J Nucl Med 1997;38:660–7.

    PubMed  CAS  Google Scholar 

  7. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979;300:1350–8.

    Article  PubMed  CAS  Google Scholar 

  8. Wieland B, Bida G, Padgett H, Hendry G, Zippi E, Kabalka G, et al. In-target production of [13N]ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures. Appl Radiat Isot 1991;42:1095–8.

    Article  CAS  Google Scholar 

  9. Alvarez-Diez TM, deKemp R, Beanlands R, Vincent J. Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography. Appl Radiat Isot 1999;50:1015–23.

    Article  PubMed  CAS  Google Scholar 

  10. Townsend DW, Beyer T, Jerin J, Watson CC, Young J, Nutt R. The ECAT ART scanner for positron emission tomography. 1. Improvements in performance characteristics. Clin Positron Imaging 1999;2:5–15.

    Article  PubMed  Google Scholar 

  11. Epstein NJ, Benelfassi A, Beanlands RSB, deKemp RA. A 82Rb infusion system for quantitative perfusion imaging with 3D PET. Appl Radiat Isotopes 2004;60:921–7.

    Article  CAS  Google Scholar 

  12. Klein R, Adler A, Beanlands RS, deKemp RA. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659–73.

    Article  PubMed  CAS  Google Scholar 

  13. ICRP Publication 80. Radiation dose to patients from radiopharmaceuticals. New York: Pergamon; 2001.

    Google Scholar 

  14. Watson CC, Newport D, Casey ME, deKemp RA, Beanlands RSSM. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 1997;44:90–7.

    Article  Google Scholar 

  15. Watson CC. New, faster, image-based scatter correction of 3D PET. IEEE Trans Nucl Sci 2000;47:1587–94.

    Article  Google Scholar 

  16. Schafers KP, Spinks TJ, Camici PG, Bloomfield PM, Rhodes CG, Law MP, et al. Absolute quantification of myocardial blood flow with \({\text{H}}^{{15}}_{2} {\text{O}}\) and 3-dimensional PET: an experimental validation. J Nucl Med 2002;43:1031–40.

    PubMed  Google Scholar 

  17. deKemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron tomography. Physiol Meas 1996;17:95–108.

    Article  PubMed  CAS  Google Scholar 

  18. Laubenbacher C, Rothley J, Sitomer J, Beanlands R, Sawada S, Sutor R, et al. An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med 1993;34:968–78.

    PubMed  CAS  Google Scholar 

  19. Weinberg IN, Huang SC, Hoffman EJ, Araujo L, Nienaber C, Grover-McKay M, et al. Validation of PET-acquired input functions for cardiac studies. J Nucl Med 1988;29:241–7.

    PubMed  CAS  Google Scholar 

  20. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032–42.

    Article  PubMed  CAS  Google Scholar 

  21. van den Hoff J, Burchert W, Börner A-R, Fricke H, Kühnel G, Meyer GJ, et al. [1-11C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med 2001;42:1174–82.

    PubMed  Google Scholar 

  22. Coxson PG, Brennan KM, Huesman RH, Lim S, Budinger TF. Variability and reproducibility of rubidium-82 kinetic parameters in the myocardium of the anesthetized canine. J Nucl Med 1995;36:287–96.

    PubMed  CAS  Google Scholar 

  23. Golanowski L, deKemp RA, Beanlands RS, Ruddy TD. Variance-covariance of 82Rb kinetic parameter estimates: computer simulations and dynamic PET studies. Proceedings of the 22nd Annual International Conference of the IEEE Engineering and Medicine in Biology Society 2000;2:1096–9.

    Google Scholar 

  24. Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;33:1243–50.

    PubMed  CAS  Google Scholar 

  25. Muzik O, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993;34:83–91.

    PubMed  CAS  Google Scholar 

  26. Trust region methods for nonlinear minimization. Optimization toolbox user’s guide. The mathworks; 2000; p. 3.3–3.5.

  27. Landaw EM, DiStefano JJ. Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. Am J Physiol 1984;246:R665–77.

    PubMed  CAS  Google Scholar 

  28. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205–10.

    PubMed  CAS  Google Scholar 

  29. Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 1963;58:292–305.

    PubMed  CAS  Google Scholar 

  30. Kanji GK. 100 Statistical tests. Newbury Park, CA: SAGE Publications; 1993.

    Google Scholar 

  31. Fitting Data. Curve fitting toolbox user’s guide. The mathworks; 2002; p. 3.1–3.76.

  32. Muzik O, Beanlands R, Wolfe E, Hutchins GD, Schwaiger M. Automated region definition for cardiac nitrogen-13-ammonia PET imaging. J Nucl Med 1993;34:336–44.

    PubMed  CAS  Google Scholar 

  33. Beanlands RS, Muzik O, Melon P, Sutor R, Sawada S, Muller D, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465–75.

    Article  PubMed  CAS  Google Scholar 

  34. Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1991;17:879–86.

    Article  PubMed  CAS  Google Scholar 

  35. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62–9.

    PubMed  CAS  Google Scholar 

  36. Chan SY, Brunken RC, Czernin J, Porenta G, Kuhle W, Krivokapich J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 1992;20:979–85.

    Article  PubMed  CAS  Google Scholar 

  37. Gewirtz H, Skopicki HA, Abraham SA, Castano H, Dinsmore RE, Alpert NM, et al. Quantitative PET measurements of regional myocardial blood flow: observations in humans with ischemic heart disease. Cardiology 1997;88:62–70.

    Article  PubMed  CAS  Google Scholar 

  38. Yoshinaga K, Chow BJW, deKemp RA, Thorn S, Ruddy TD, Davies RA, et al. Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders. Curr Pharm Des 2005;11:903–32.

    Article  PubMed  CAS  Google Scholar 

  39. Schelbert HR, Phelps ME, Huang S-C, MacDonald NS, Hansen H, Selin C, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981;63:1259–72.

    PubMed  CAS  Google Scholar 

  40. Nagamachi S, Czernin J, Kim AS, Sun KT, Böttcher M, Phelps ME, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med 1996;37:1626–30.

    PubMed  CAS  Google Scholar 

  41. Camici PG. Positron emission tomography and myocardial imaging. Heart 2000;83:475–80.

    Article  PubMed  CAS  Google Scholar 

  42. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation betwen myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  43. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 1999;99:475–81.

    PubMed  CAS  Google Scholar 

  44. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 1994;89:1013–22.

    PubMed  Google Scholar 

  45. Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest 1985;75:1131–7.

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein RA. Rubidium-82 kinetics after coronary occlusion: Temporal relation of net myocardial accumulation and viability in open-chested dogs. J Nucl Med 1986;1456–61.

  47. Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991;32:1–9.

    PubMed  CAS  Google Scholar 

  48. vom Dahl J, Muzik O, Wolfe ERJ, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation 1996;93:238–45.

    Google Scholar 

  49. Schelbert H. Positron emission tomography of the heart: methodology, findings in the normal and the diseased heart, and clinical applications. In: Phelps ME, editor. PET molecular imaging and its biological applications. Berlin Heidelberg New York: Springer; 2004; p. 389–508.

    Google Scholar 

  50. Glatting G, Bergmann KP, Stollfuss JC, Weismueller P, Kochs M, Hombach V, et al. Myocardial Rb extraction fraction: determination in humans. J Am Coll Cardiol 1995;25:364A–5A.

    Article  Google Scholar 

  51. Lin J-W, Sciacca RR, Chou R-L, Laine AF, Bergmann SR. Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction. J Nucl Med 2001;42:201–8.

    PubMed  CAS  Google Scholar 

  52. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O’Brien HA. Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic interventions. J Nucl Med 1983;24:907–15.

    PubMed  CAS  Google Scholar 

  53. Fukuyama T, Nakamura M, Nakagaki O, Matsuguchi H, Mitsutake A, Kikuchi Y, et al. Reduced reflow and diminished uptake of 86Rb after temporary coronary occlusion. Am J Physiol 1978;234:H724–9.

    PubMed  CAS  Google Scholar 

  54. Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O’Brien HA, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24:898–906.

    PubMed  CAS  Google Scholar 

  55. Villanueva FS, Smith WH, Watson DD, Beller GA. ST-segment depression during dipyridamole infusion, and its clinical, scintigraphic and hemodynamic correlates. Am J Cardiol 1992;69:445–8.

    Article  PubMed  CAS  Google Scholar 

  56. Bacharach SL, Bax JJ, Case J, Delbeke D, Kurdziel KA, Martin WH, et al. PET myocardial glucose metabolism and perfusion imaging: guidelines for patient preparation and data acquisition. J Nucl Cardiol 2003;10:543–54.

    Article  PubMed  Google Scholar 

  57. Schelbert HR, Beanlands R, Bengel F, Knuuti J, DiCarli M, Machac J, et al. PET myocardial glucose metabolism and perfusion imaging: guidelines for interpretation and reporting. J Nucl Cardiol 2003;10:557–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Cathy Kelly, Karen Mostert, Linda Garrard, Debbie Gauthier, Michaela Garkisch, May Aung, and Kim Gardner for their help in subject recruitment and data acquisition as well as Kathryn Williams for her help in statistical analysis. Thank you also to Samantha Mason, Anthony DiNardo, and Paul Coletta for the synthesis of 13N-ammonia. This work was supported by a Medical Research Grant from the J.P. Bickell Foundation (Toronto, Ontario, Canada). M. Lortie was supported by the Ontario Consortium for Cardiac Imaging funded by the Ontario Research and Development Challenge Fund (Grant #00-May-0710), R. Klein by the Natural Sciences and Engineering Research Council of Canada, and R. Beanlands by a Premier’s Research Excellence Award and a Canadian Institutes of Health Research Scientist Award. This study was conducted in compliance with current Canadian laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. deKemp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lortie, M., Beanlands, R.S.B., Yoshinaga, K. et al. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 34, 1765–1774 (2007). https://doi.org/10.1007/s00259-007-0478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0478-2

Keywords

Navigation