Skip to main content
Log in

Relationship between cerebral arterial pulsatility and carotid intima media thickness in diabetic and non-diabetic patients with non-alcoholic fatty liver disease

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is considered a risk factor for atherosclerosis. The aim of the present study was to investigate the association of the pulsatility index (PI) of basilar artery (BA) and carotid intima media thickness (IMT) in diabetic and non-diabetic NAFLD patients. We compared a group of 80 stroke-free, diabetic and non-diabetic NAFLD patients and a control group of 26 healthy subjects without NAFLD. We then evaluated the PI of the BA by transcranial Doppler ultrasonography, and carotid IMT. The PI was significantly higher in diabetic NAFLD patients than in controls (p<0.003). Carotid IMT and asymmetrical dimethylarginine (ADMA) levels were higher in NAFLD patients than controls respectively (p<0.003, p<0.04). The PI of the BA was significantly correlated with age (R=0.369, p<0.001), male gender (R=0.207, p=0.035). diabetes (R=0.332, p=0.001), carotid IMT (R=0.296, p=0.002) and ADMA (R=0.349, p=0.015). A multiple regression analysis was performed with PI as the dependent variable with known clinical risk factors. Age (β=3.54, p<0.001), diabetes (β=2.32, p=0.022), gender (β=2.20, p<0.03), ADMA (β=2.25, p<0.031), and carotid IMT (β=2.41, p<0.017), were independent predictive factors of BA PI. Adjustment for age and gender did not alter these relative risks, exhibiting a significant independent contribution to PI. The increased PI observed in this study represents enhanced cerebrovascular resistance, and we observed that the age, male gender, diabetes, ADMA levels, and carotid IMT were independent predictive factors of BA PI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harrison SA, Neuschwander-Tetri BA. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Clin Liver Dis 2004, 8: 861–79.

    Article  PubMed  Google Scholar 

  2. McCullough AJ. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin Liver Dis 2004, 8: 521–33.

    Article  PubMed  Google Scholar 

  3. Zsuga J, Gesztelyi R, Török J, Keki S, Bereczki D. Asymmetric dimethylarginine: a molecule responsible for the coexistence of insulin resistance and atherosclerosis via dual nitric oxide synthase inhibition. Medical Hypotheses 2005, 65: 1091–8.

    Article  CAS  PubMed  Google Scholar 

  4. Perticone F, Sciacqua A, Maio R, et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 2005, 46: 518–23.

    Article  CAS  PubMed  Google Scholar 

  5. Kawamori R, Yamasaki Y, Matsushima H, et al. Prevalence of carotid atherosclerosis in diabetic patients: ultrasound high-resolution B-mode imaging on carotid arteries. Diabetes Care 1992, 15: 1290–4.

    Article  CAS  PubMed  Google Scholar 

  6. Temelkova-Kurktschiev TS, Koehler C, Leonhardt W, et al. Increased intimal-medial thickness in newly detected type 2 diabetes: risk factors. Diabetes Care 1999, 22: 333–8.

    Article  CAS  PubMed  Google Scholar 

  7. Mercuri M, Bond MG, Nichos FT, et al. Baseline reproducibility of B-mode ultrasound imaging measurements of carotid intimal media thickness. J Cardiovasc Diag Procedures 1993, 11: 241–52.

    Google Scholar 

  8. Wakisaka M, Nagamachi S, Inoue K, Morotomi Y, Nunoi K, Fujishima M. Reduced regional cerebral blood flow in aged non-insulin-dependent diabetic patients with no history of cerebrovascular disease: evaluation by N-isopropyl-123I-p-iodoamphetamine with single photon emission computed tomography. J Diabet Complications 1990, 4: 170–4.

    Article  CAS  PubMed  Google Scholar 

  9. Jimenez-Bonilla JF, Carril JM, Quirce R, Gomez-Barquin R, Amado JA, Gutierrez-Mendiguchia C. Assessment of cerebral blood flow in diabetic patients with no clinical history of neurological disease. Nucl Med Commun 1996, 17: 790–4.

    Article  CAS  PubMed  Google Scholar 

  10. Grill V, Gutniak M, Bjorkman O, et al. Cerebral blood flow and substrates utilization in insulin-treated diabetic subjects. Am J Physiol 1990, 258: E813–20.

    CAS  PubMed  Google Scholar 

  11. Lippera S, Gregorio F, Ceravolo MG, Lagalla G, Provinciali L. Diabetic retinopathy and cerebral hemodynamic impairment in type II diabetes. Eur J Ophthalmol 1997, 7: 156–62.

    CAS  PubMed  Google Scholar 

  12. Fulesdi B, Limburg M, Bereczki D, et al. Impairment of cerebrovascular reactivity in long-term type 1 diabetes. Diabetes 1997, 46: 1840–5.

    Article  CAS  PubMed  Google Scholar 

  13. Yasaka M, Yamaguchi T, Shichiri M. Distribution of atherosclerosis and risk factors in atherothrombotic occlusion. Stroke 1993, 24: 206–11.

    Article  CAS  PubMed  Google Scholar 

  14. Day CP. Non-alcoholic fatty liver disease: current concepts and management strategies. Clin Med 2006, 6: 19–25.

    Article  PubMed  Google Scholar 

  15. McCullough AJ. Pathophysiology of non-alcoholic steatohepatitis. J Clin Gastroenterol 2006, 40(Suppl. 1): 17–29.

    Google Scholar 

  16. Saadeh S, Younossi ZM, Remer EM, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123: 745–50.

    Article  PubMed  Google Scholar 

  17. Fujioka KA, Douville CM. Anatomy and free hand examination techniques. In: Newell DW, Aaslid R, eds. Transcranial Doppler. New York, NY: Raven Press Publishers. 1992, 9–31.

    Google Scholar 

  18. Katz ML, Whisler GD. Examination using transcranial Doppler mapping. In: Newell DW, Aaslid R, eds. Transcranial Doppler. New York, NY: Raven Press Publishers. 1992, 33–9.

    Google Scholar 

  19. Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 1974, 67: 447–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Lindegaard K-F. Indices of pulsatility. In: Newell DW, Aaslid R, eds. Transcranial Doppler. New York, NY: Raven Press Publishers, 1992, 67–82.

    Google Scholar 

  21. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28: 412–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lee KY, Sohn YH, Baik JS, Kim GW, Kim JS. Arterial pulsatility as an index of cerebral microangiopathy in diabetes. Stroke 2000, 31: 1111–5.

    Article  CAS  PubMed  Google Scholar 

  23. Kidwell CS, El-Saden S, Livshits Z, Martin NA, Glenn TC, Saver JL. Transcranial Doppler pulsatility indices as a measure of diffuse small-vessel disease. J Neuroimaging 2001, 11: 229–35.

    Article  CAS  PubMed  Google Scholar 

  24. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 2004, 62: 45–51.

    Article  PubMed  Google Scholar 

  25. Shen J, Xue Y, Zhang Y, Wang Q. The application of transcranial Doppler in detecting diabetic cerebral macroangiopathy and microangiopathy. Zhonghua Nei Ke Za Zhi 2002, 41: 172–4.

    PubMed  Google Scholar 

  26. Dikanovic M, Hozo I, Kokic S, et al. Transcranial Doppler ultrasound assessment of intracranial hemodynamics in patients with type 2 diabetic mellitus. Ann Saudi Med 2005, 25: 486–8.

    PubMed  Google Scholar 

  27. Lippera S, Gregorio F, Ceravolo MG, Lagalla G, Provinciali L. Diabetic retinopathy and cerebral hemodynamic impairment in type 2 diabetes, Eur J Ophthalmol 1997, 7: 156–62.

    CAS  PubMed  Google Scholar 

  28. Fülesdi B, Limburg M, Oláh L, Bereczki D, Csiba L, Kollár J. Lack of gender difference in acetazolamide induced cerebral vasomotor reactivity in patients suffering from type 1 diabetes mellitus. Acta Diabetol 2001, 38: 107–12.

    Article  PubMed  Google Scholar 

  29. Fulesdi B, Limburg M, Bereczki D, et al. Cerebrovascular reactivity and reserve capacity in type II diabetes mellitus. J Diabetes Complications 1999, 13: 191–9.

    Article  CAS  PubMed  Google Scholar 

  30. Kadoi Y, Hinohara H, Kunimoto F, et al. Diabetic patients have an impaired cerebral vasodilatory response to hypercapnia under propofol anesthesia. Stroke 2003, 34: 2399–403.

    Article  PubMed  Google Scholar 

  31. Idris I, Thomson GA, Sharma JC. Diabetes mellitus and stroke. Int J Clin Pract 2006, 60: 48–56.

    Article  CAS  PubMed  Google Scholar 

  32. Tkác I, Troscák M, Javorský M, Petrík R, Tomcová M. Increased intracranial arterial resistance in patients with type 2 diabetes mellitus. Wien Klin Wochenschr 2001, 113: 870–3.

    PubMed  Google Scholar 

  33. Cho SJ, Sohn YH, Kim GW, Kim JS. Blood flow velocity changes in the middle cerebral artery as an index of the chronicity of hypertension. J Neurol Sci 1997, 150: 77–80.

    Article  CAS  PubMed  Google Scholar 

  34. Grolimund P, Seiler RW. Age dependence of the flow velocity in the basal cerebral arteries — a transcranial Doppler ultrasound study. Ultrasound Med Biol 1988, 14: 191–8.

    Article  CAS  PubMed  Google Scholar 

  35. Albert MA, Danielson E, Rifai N, and Ridker PM. Effect of statin therapy on C-reactive protein levels: the Pravastatin Inflammation/CRP Evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001, 286: 64–70.

    Article  CAS  PubMed  Google Scholar 

  36. Fukuhara T, Hida K. Pulsatility index at the cervical internal carotid artery as a parameter of microangiopathy in patients with type 2 diabetes. J Ultrasound Med 2006, 25: 599–605.

    PubMed  Google Scholar 

  37. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular health study collaborative research group. N Engl J Med 1999, 340: 14–22.

    Google Scholar 

  38. Langenfeld MR, Forst T, Hohberg C, et al. Pioglitazone decrease carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus. results from a controlled randomized study. Circulation 2005, 111: 2525–31.

    CAS  Google Scholar 

  39. Brea A, Mosquera D, Martin E, Arizti A, Cordero JL, Ros E. Nonalcoholic fatty liver disease is associated with carotid atherosclerosis. A case-control study. Arterioscler Thromb Vasc Biol 2005, 25: 1045–50.

    Article  CAS  Google Scholar 

  40. Villanova N, Moscatiello S, Ramilli S, et al. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology 2005, 42: 473–80.

    Article  PubMed  Google Scholar 

  41. Zoccali C, Bode-Böger S, Mallamaci F, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 2001, 358: 2113–7.

    Article  CAS  PubMed  Google Scholar 

  42. Valkonen VP, Pälvä H, Salonen JT, et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 2001, 358: 2127–8.

    Article  CAS  PubMed  Google Scholar 

  43. Böger RH, Bode-Böger SM, Kienke S, Stan AC, Nafe R, Frölich JC. Dietary L-arginine decreases myointimal cell proliferation and vascular monocyte accumulation in cholesterol-fed rabbits. Atherosclerosis 1998, 136: 67–77.

    Article  PubMed  Google Scholar 

  44. Pelligrino DA, Albrecht RF. Chronic hyperglycemic diabetes in the rat is associated with a select impairment of cerebral vasodilatory responses. J Cereb Blood Flow Metab 1991, 11: 667–77.

    Article  CAS  PubMed  Google Scholar 

  45. Mayhan WG. Responses of cerebral arterioles to activation of β-adrenergic receptors during diabetes mellitus. Stroke 1994, 25: 141–6.

    Article  CAS  PubMed  Google Scholar 

  46. Lee KO, Lee KY, Lee SY, Ahn CW, Park JS. Lacunar Infarction in type 2 diabetes is associated with an elevated intracranial arterial pulsatility Index. Yonsei Med J 2007, 48: 802–6.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Park JS, Cho MH, Lee KY, et al. Cerebral arterial pulsatility and insulin resistance in type 2 diabetic patients. Diabetes Res Clin Pract 2008, 79: 237–42.

    Article  CAS  PubMed  Google Scholar 

  48. Kwon JH, Kim JS, Kang DW, Bae KS, Kwon SU. The thickness and texture of temporal bone in brain CT predict acoustic window failure of transcranial Doppler. J Neuroimaging 2006, 16: 347–52.

    Article  PubMed  Google Scholar 

  49. Itoh T, Matsumoto M, Handa N, et al. Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography. Stroke 1993, 24: 1192–5.

    Article  CAS  PubMed  Google Scholar 

  50. Halsey JH. Effect of emitted power on waveform intensity in transcranial Doppler. Stroke 1990, 21: 1573–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Karakurt MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakurt, F., Carlioglu, A., Koktener, A. et al. Relationship between cerebral arterial pulsatility and carotid intima media thickness in diabetic and non-diabetic patients with non-alcoholic fatty liver disease. J Endocrinol Invest 32, 63–68 (2009). https://doi.org/10.1007/BF03345681

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345681

Key-words

Navigation