Magnetic reconnection is often invoked as a source of highenergy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with largescale threedimensional kinetic particleincell simulations in electron–positron plasmas—that elucidates the physics governing the generation of powerlaw energy spectra in relativistic reconnection. Particles with Lorentz factor
We have surveyed 21 reconnection exhaust events observed by Magnetospheric MultiScale in the lowplasma
 Award ID(s):
 2109083
 NSFPAR ID:
 10521636
 Publisher / Repository:
 American Astronomical Society
 Date Published:
 Journal Name:
 The Astrophysical Journal
 Volume:
 954
 Issue:
 2
 ISSN:
 0004637X
 Page Range / eLocation ID:
 118
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract γ ≳ 3σ (here,σ is the magnetization) gain most of their energy in the inflow region, while meandering between the two sides of the reconnection layer. Their acceleration time is , where ${t}_{\mathrm{acc}}\sim \gamma \phantom{\rule{0.25em}{0ex}}{\eta}_{\mathrm{rec}}^{1}{\omega}_{\mathrm{c}}^{1}\simeq 20\phantom{\rule{0.25em}{0ex}}\gamma \phantom{\rule{0.25em}{0ex}}{\omega}_{\mathrm{c}}^{1}$η _{rec}≃ 0.06 is the inflow speed in units of the speed of light andω _{c}=eB _{0}/mc is the gyrofrequency in the upstream magnetic field. They leave the region of active energization aftert _{esc}, when they get captured by one of the outflowing flux ropes of reconnected plasma. We directly measuret _{esc}in our simulations and find thatt _{esc}∼t _{acc}forσ ≳ few. This leads to a universal (i.e.,σ independent) powerlaw spectrum for the particles undergoing active acceleration, and ${\mathit{dN}}_{\mathrm{free}}/d\gamma \propto {\gamma}^{1}$ for the overall particle population. Our results help to shed light on the ubiquitous presence of powerlaw particle and photon spectra in astrophysical nonthermal sources. $\mathit{dN}/d\gamma \propto {\gamma}^{2}$ 
Abstract Let
be an elliptically fibered$$X\rightarrow {{\mathbb {P}}}^1$$ $X\to {P}^{1}$K 3 surface, admitting a sequence of Ricciflat metrics collapsing the fibers. Let$$\omega _{i}$$ ${\omega}_{i}$V be a holomorphicSU (n ) bundle overX , stable with respect to . Given the corresponding sequence$$\omega _i$$ ${\omega}_{i}$ of Hermitian–Yang–Mills connections on$$\Xi _i$$ ${\Xi}_{i}$V , we prove that, ifE is a generic fiber, the restricted sequence converges to a flat connection$$\Xi _i_{E}$$ ${\Xi}_{i}{}_{E}$ . Furthermore, if the restriction$$A_0$$ ${A}_{0}$ is of the form$$V_E$$ ${V}_{E}$ for$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j0)$$ ${\oplus}_{j=1}^{n}{O}_{E}({q}_{j}0)$n distinct points , then these points uniquely determine$$q_j\in E$$ ${q}_{j}\in E$ .$$A_0$$ ${A}_{0}$ 
Abstract We measure the thermal electron energization in 1D and 2D particleincell simulations of quasiperpendicular, lowbeta (
β _{p}= 0.25) collisionless ion–electron shocks with mass ratiom _{i}/m _{e}= 200, fast Mach number –4, and upstream magnetic field angle ${\mathcal{M}}_{\mathrm{ms}}=1$θ _{Bn}= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, $\stackrel{\u02c6}{\mathit{n}}$ parallel electric potential jump, ΔB ϕ _{∥}, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the preshock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measure $\mathrm{\Delta}{\varphi}_{\parallel}/(0.5{m}_{\mathrm{i}}{{u}_{\mathrm{sh}}}^{2})\sim 0.1$ϕ _{∥}, including the use of de Hoffmann–Teller frame fields, agree to tensofpercent accuracy. Neglecting offdiagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ _{∥}in our lowβ _{p}shocks. We further focus on twoθ _{Bn}= 65° shocks: a ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$ ) case with a long, 30 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}1.8$d _{i}precursor of whistler waves along , and a $\stackrel{\u02c6}{\mathit{n}}$ ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}7$ ) case with a shorter, 5 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}3.2$d _{i}precursor of whistlers oblique to both and $\stackrel{\u02c6}{\mathit{n}}$ ;B d _{i}is the ion skin depth. Within the precursors,ϕ _{∥}has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the , ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$θ _{Bn}= 65° case,ϕ _{∥}shows a weak dependence on the electron plasmatocyclotron frequency ratioω _{pe}/Ω_{ce}, andϕ _{∥}decreases by a factor of 2 asm _{i}/m _{e}is raised to the true proton–electron value of 1836. 
Abstract We develop a Newtonian model of a deep tidal disruption event (TDE), for which the pericenter distance of the star,
r _{p}, is well within the tidal radius of the black hole,r _{t}, i.e., whenβ ≡r _{t}/r _{p}≫ 1. We find that shocks form forβ ≳ 3, but they are weak (with Mach numbers ∼1) for allβ , and that they reach the center of the star prior to the time of maximum adiabatic compression forβ ≳ 10. The maximum density and temperature reached during the TDE follow much shallower relations withβ than the previously predicted and ${\rho}_{\mathrm{max}}\propto {\beta}^{3}$ scalings. Below ${T}_{\mathrm{max}}\propto {\beta}^{2}$β ≃ 10, this shallower dependence occurs because the pressure gradient is dynamically significant before the pressure is comparable to the ram pressure of the freefalling gas, while aboveβ ≃ 10, we find that shocks prematurely halt the compression and yield the scalings and ${\rho}_{\mathrm{max}}\propto {\beta}^{1.62}$ . We find excellent agreement between our results and highresolution simulations. Our results demonstrate that, in the Newtonian limit, the compression experienced by the star is completely independent of the mass of the black hole. We discuss our results in the context of existing (affine) models, polytropic versus nonpolytropic stars, and general relativistic effects, which become important when the pericenter of the star nears the direct capture radius, at ${T}_{\mathrm{max}}\propto {\beta}^{1.12}$β ∼ 12.5 (2.7) for a solarlike star disrupted by a 10^{6}M _{⊙}(10^{7}M _{⊙}) supermassive black hole. 
Abstract We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with H
β having the longest delay at days and He ${\tau}_{\mathrm{cent}}={4.0}_{0.9}^{+0.9}$ii having the shortest delay with days. We also detect velocityresolved behavior of the H ${\tau}_{\mathrm{cent}}={0.9}_{0.8}^{+1.1}$β emission line, with different lineofsight velocities corresponding to different observed time delays. Combining the integrated Hβ time delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass of ${M}_{\mathrm{BH}}={1.1}_{0.3}^{+0.2}\times {10}^{7}$M _{⊙}. Modeling of the full velocityresolved response of the Hβ emission line with the phenomenological codeCARAMEL finds a similar mass of ${M}_{\mathrm{BH}}={1.2}_{0.7}^{+1.5}\times {10}^{7}$M _{⊙}and suggests that the Hβ emitting broadline region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθ _{i}≈ 33° and with gas motions that are dominated by rotation. The new photoionizationbased BLR modeling toolBELMAC finds general agreement with the observations when assuming the bestfitCARAMEL results; however,BELMAC prefers a thickdisk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing.