Supplemental material

Appendix I: Search strategies

Appendix II: Table S1

Appendix III: Figure S1-9

Appendix IV: Table S1-2

Appendix V: Figure S1-3

Appendix VI: Table S1, Figure S1-9

Appendix VII: Table S1

Appendix VIII: Figure S1-4, Table S1

Appendix I: Search strategies

MEDLINE (Ovid)

- 1. exp Electrocardiography, Ambulatory/ or exp Electrocardiography/
- 2. (12-Lead ECG or 12-Lead EKG or 12-Lead Electrocardiography or ECG or EKG or Electrocardiogram or Electrocardiograph or Ambulatory Electrocardiography or Ambulatory Electrocardiography Monitoring or Dynamic Electrocardiography or Electrocardiography Monitoring, Ambulatory or Electrocardiography, Dynamic or Electrocardiography, Holter or Holter ECG Holter EKG or Holter or Electrocardiography Holter Monitoring Monitoring, **Ambulatory** or Electrocardiographic or Monitoring, Holter or Extended ECG monitor* or Extended Holter monitor* or Patch ECG* or Wearable ECG monitor* or Continuous hospital telemetry or mobile cardiac outpatient telemetry or Patient triggered event recorder* or implantable loop recorder* or Implantable cardiac monitor* or ICM*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword heading word, floating subheading word, candidate term word]
- 3. 1 or 2
- 4. exp Ischemic Stroke/ or exp Stroke/
- 5. exp Ischemic Attack, Transient/
- 6. (CVA or Cerebral Stroke or Cerebrovascular Accident or Cerebrovascular Accident, Acute or Cerebrovascular Stroke or Stroke, Acute or Vascular Accident, Brain or Acute Ischemic Stroke or Cryptogenic Embolism Stroke or Cryptogenic Ischemic Stroke or Cryptogenic Stroke or Ischaemic Stroke or Wake-up Stroke or TIA or Transient Ischemic Attack).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism

supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

- 7. 4 or 5 or 6
- 8. exp Atrial Fibrillation/
- 9. 3 and 6 and 7
- 10. limit 9 to english language
- 11. limit 10 to yr="2011 -Current"

EMBASE (Ovid)

- 12. exp Electrocardiography, Ambulatory/ or exp Electrocardiography/
- 13. (12-Lead ECG or 12-Lead EKG or 12-Lead Electrocardiography or ECG or EKG or Electrocardiogram or Electrocardiograph or Ambulatory Electrocardiography or Ambulatory Electrocardiography Monitoring or Dynamic Electrocardiography or Electrocardiography Monitoring, Ambulatory or Electrocardiography, Dynamic or Holter ECG Electrocardiography, Holter or Holter EKG or Holter Electrocardiography Holter Monitoring Monitoring, **Ambulatory** Electrocardiographic or Monitoring, Holter or Extended ECG monitor* or Extended Holter monitor* or Patch ECG* or Wearable ECG monitor* or Continuous hospital telemetry or mobile cardiac outpatient telemetry or Patient triggered event recorder* or implantable loop recorder* or Implantable cardiac monitor* or ICM*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword heading word, floating subheading word, candidate term word]
- 14. 1 or 2
- 15. exp Ischemic Stroke/ or exp Stroke/
- 16. exp Ischemic Attack, Transient/

17. (CVA or Cerebral Stroke or Cerebrovascular Accident or Cerebrovascular Accident, Acute or Cerebrovascular Stroke or Stroke, Acute or Vascular Accident, Brain or Acute Ischemic Stroke or Cryptogenic Embolism Stroke or Cryptogenic Ischemic Stroke or Cryptogenic Stroke or Ischaemic Stroke or Wake-up Stroke or TIA or Transient Ischemic Attack).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

- 18. 4 or 5 or 6
- 19. exp Atrial Fibrillation/
- 20. 3 and 6 and 7
- 21. limit 9 to english language
- 22. limit 10 to yr="2011 -Current"

Cochrane (CENTRAL)

- #1. MeSH descriptor: [Electrocardiography] explode all trees
- #2. MeSH descriptor: [Electrocardiography, Ambulatory] explode all trees
- #3. (12 Lead ECG or 12 Lead EKG or 12 Lead Electrocardiography or ECG or EKG or Electrocardiogram or Electrocardiograph or Ambulatory Electrocardiography or Ambulatory Electrocardiography Monitoring or Dynamic Electrocardiography or Electrocardiography Monitoring, Ambulatory or Electrocardiography, Dynamic or Electrocardiography, Holter Holter ECG Holter EKG or Holter Electrocardiography Holter Monitoring Monitoring, Ambulatory Electrocardiographic or Monitoring, Holter or Extended ECG monitor* or Extended Holter monitor* or Patch ECG* or Weable ECG montior* or Continuous hospital telemetry or Mobile cardiac outpatient telemetry or Patient triggered event recorder* or

Prolonged ambulatory ECG or Implantable loop recorder* or Implantable cardiac monitor* or ICM*):ti,ab,kw

- #4. #1 or #2 or #3
- #5. MeSH descriptor: [Stroke] explode all trees
- #6. MeSH descriptor: [Ischemic Stroke] explode all trees
- #7. MeSH descriptor: [Ischemic Attack, Transient] explode all trees
- #8. (CVA or Cerebral Stroke or Cerebrovascular Accident or Cerebrovascular Accident,
 Acute or Cerebrovascular Stroke or Stroke, Acute or Vascular Accident, Brain or Acute
 Ischemic Stroke or Cryptogenic Embolism Stroke or Cryptogenic Ischemic Stroke or
 Cryptogenic Stroke or Ischaemic Stroke or Wake-up Stroke or Transient Ischemic
 Attack or TIA or Embolic Stroke of Unknown Source or ESUS):ti,ab,kw
- #9. #5 or #6 or #7 or #8
- #10. MeSH descriptor: [Atrial Fibrillation] explode all trees
- #11. #4 and #9 and #10 with Publication Year from 2011 to 2021

Appendix II: Overview of all studies

Study ID	Design	Country	Condi	Monitorin g method	Duration of monitoring	Sampl e size	No. of AF	Prevalen ce of AF	Mean/ media n age
Acampa	Cohort study	Italy	Stroke	Inpatient	1 week	222	44	19.8%	70.4
2019	(Single-center)			monitorin					
				g					
Bettin	Cohort study	Germany	Stroke	ILR	24 months	173	33	19.1%	61.4
2019	(Single-center)								
Brachman	Randomised	Europe,	Both	ILR	36 months	221	42	30%	61.6
n 2016	Controlled	Canada,	Dom	ILK	30 months	221	12	3070	01.0
11 2010		•							
	Trial	USA							
Christense	Cohort study	Denmark	Stroke	ILR	18 months	85	14	20.7%	58.0
n 2014	(Single-center)								
Cotter	Cohort study	UK	Stroke	ILR	6 months	51	13	25.5%	52.0
2013	(Single-center)								
Cuadrado-	Cohort study	Spain	Both	ILR	30 months	65	38	58.5%	75.6
Godia	(Single-center)								
2020									
DeAngelis	Cohort study	Italy	Stroke	ILR	30 months	58	24	41%	68.1
2020	(Single-center)								
Flint 2012	Cohort study	USA	Stroke	MCOT	1 month	239	26	6.7%	64.6
	(Multi-center)								

Fonseca	Cohort study	Portugal	Both	Inpatient	24h	264	17	20.8%	58.6
2014	(Single-center)			monitorin					
				g					
Gladstone	Randomised	Canada	Both	MCOT	1 month	286	44	15.5%	72.5
2014	Controlled								
	Trial								
Israel 2017	Cohort study	Germany	Stroke	ILR	12 months	123	29	23.6%	65.0
	(Single-center)								
Jorfida	Cohort study	Italy	Stroke	ILR	36 months	54	25	46%	67.8
2016	(Single-center)								
Jung 2020	Cohort study	South	Stroke	Inpatient	24h	125	32	25.6%	65.3
	(Single-center)	Korea		monitorin					
				g					
Kitsiou	Cohort study	Germany	Stroke	ILR	36 months	123	51	41.4%	65.0
2021	(Single-center)								
Koh 2021	Randomised	Malaysia	Both	MCOT	1 month	105	10	9.5%	65.3
	Controlled								
	Trial								
Kulach	Cohort study	Poland	Stroke	MCOT	1 month	72	1	1.4%	59.0
2021	(Single-center)								
Kulach	Cohort study	Poland	Stroke	MCOT	7 days	78	7	9%	60.0
2019	(Single-center)								
Lee 2015	Cohort study	Singapor	Both	Inpatient	3 days	127	12	9.4%	66.0
	(Single-center)	e		monitorin					
				g					

Liantinioti	Cohort study	Greece	Stroke	Inpatient	24h	184	13	7%	57.0
2017	(Single-center)			monitorin					
				g					
Liantinioti	Cohort study	Greece	Stroke	Inpatient	24h	373	29	8%	60.0
2019	(Single-center)			monitorin					
				g					
Lips 2020	Cohort study	Germany	Both	ILR	30 months	88	19	21.6%	66.5
	(Single-center)								
Lumikari	Cohort study	Finland	Stroke	MCOT	1 month	57	7	12.3%	64.5
2019	(Single-center)								
Lumikari	Cohort study	Finland	Stroke	MCOT	2 weeks	15	1	6.7%	59. 5
2020	(Single-center)								
Lyren	Cohort study	Sweden	Both	MCOT	1 month	100	9	9%	67.6
2020	(Single-center)								
Makimoto	Cohort study	Germany	Stroke	ILR	12 months	146	30	21%	62.0
2017	(Single-center)								
Manina	Cohort study	Italy	Both	МСОТ	4 days	114	12	24.3%	63.1
2014	(Single-center)								
Milstein	Cohort study	USA	Stroke	ILR	12 months	343	67	5% (30 days)	68
2020	(Single-center)							21% (1 year)	
Muller	Cohort study	Germany	Stroke	ILR	12 months	90	16	18%	57.7
2017	(Single-center)								
Pagola	Cohort study	Spain	Stroke	MCOT	1 month	146	32	21.9%	76.0
2018	(Single-center)								

Pagola	Cohort study	Spain	Stroke	MCOT	1 month	253	54	21.3%	74.4
2021	(Multi-center)								
Pedersen	Cohort study	Denmark	TIA	ILR	12 months	105	7	6.7%	65.4
2018	(Single-center)								
Petrovicov	Cohort study	Slovak	Both	ILR	12 months	100	24	24%	70.1
a 2021	(Single-center)	Republic							
Poli 2016	Cohort study	Germany	Both	ILR	12 months	75	25	33.3%	66.4
	(Single-center)								
Poulsen	Cohort study	Denmark	Both	MCOT	1 month	95	20	21.1%	78
2017	(Single-center)								
Rabinstein	Cohort study	USA	Stroke	MCOT	3 weeks	64	3	4.7%	67.9
2013	(Single-center)								
Reinke	Cohort study	Germany	Stroke	ILR	24 months	105	19	18%	64.4
2018	(Single-center)								
Riordan	Cohort study	USA	Stroke	ILR	24 months	293	74	25%	67.5
2020	(Single-center)								
Ritter	Cohort study	Germany	Stroke	ILR,	12 months	60	10 (ILR)	17%	63.0
2013	(Single-center)			MCOT	(ILR)		1		
					7 days		(MCO T)		
					(MCOT)				
RubioCam	Cohort study	Spain	Both	MCOT	3 weeks	50	11	22%	69.0
pal 2020	(Single-center)								
Sanak	Cohort study	Czech	Stroke	MCOT	3 weeks	95	9	9.5%	39.1
2015	(Single-center)	Republic							

Seow 2018	Cohort study (Single-center)	Singapor e	Both	ILR	12 months	71	11	12.9% (6 months) 15.2% (12 months)	61.9
Toyoda	Cohort study	Japan	Stroke	MCOT	1 week	206	13	6.3%	71.0
2021	(Multi-center)								
Triantafyll ou 2020	Cohort study (Single-center)	Greece	Both	ILR, Inpatient monitorin g	18 months (ILR) 24h (Inpatient monitoring)	373 Holter ; 123 ILR/I CM	26 (ILR) 28 (Inpat ient monit oring)	7.5% (Holter) 21.1% (ICM)	60.0
Tu 2014	Cohort study (Single-center)	Australia	Stroke	MCOT	3 weeks	20	1	5.0% (28 days), 20.0% (2 years)	66.0
Ungar 2021	Cohort study (Multi-center)	Italy	Stroke	ILR	24 months	334	92	27.5%	67.4
Victor 2018	Cohort study (Single-center)	Spain	Stroke	ILR	24 months	65	12	29.2%	65.4
Yayehd 2015	Cohort study (Single-center)	France	Stroke	MCOT	3 weeks	39	1	2.6%	48.0

USA: United States of America; UK: United Kingdom; AF: Atrial fibrillation; ILR: Implantable loop recorder;

MCOT: Mobile cardiac outpatient telemetry

Table S1. Overview of study characteristics

Appendix III: Additional forest plots

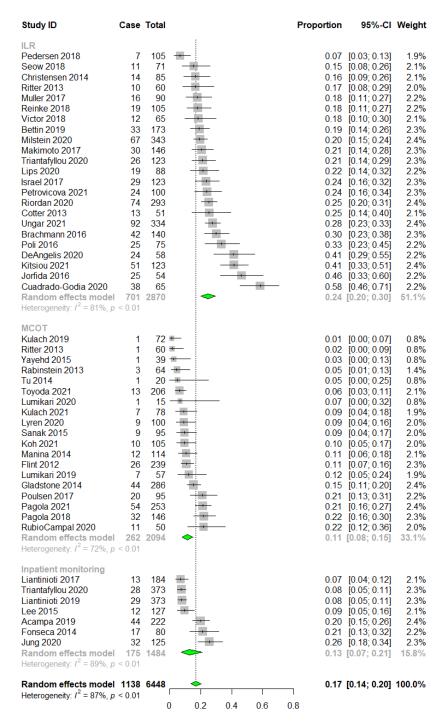


Figure S1. Overall pooled AF detection rates

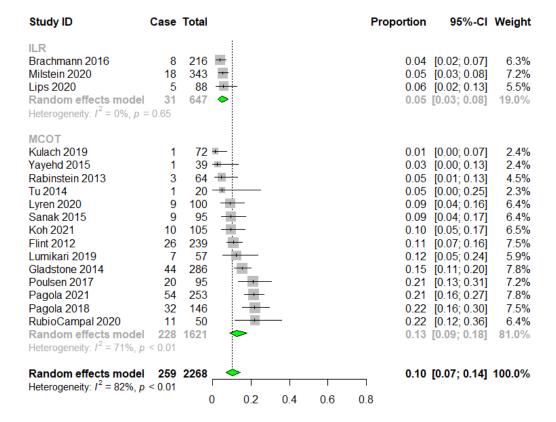


Figure S2. Pooled AF detection rates for ILRs and MCOTs at 1 month

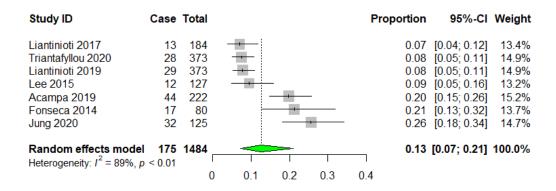


Figure S3. Pooled AF detection rates for inpatient monitoring devices

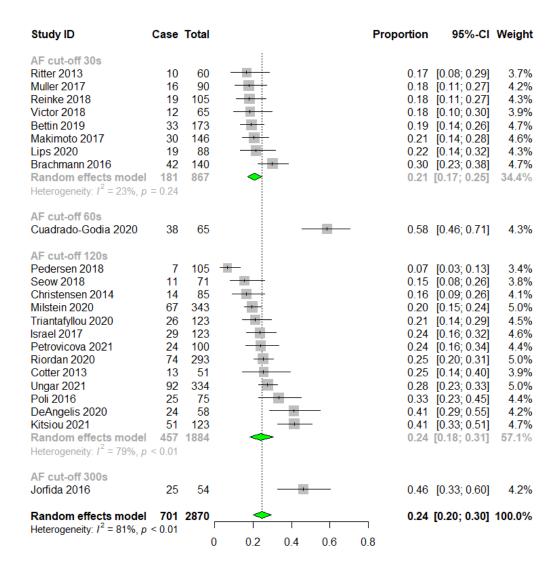


Figure S4. Pooled AF detection rates for ILRs by AF cut-off duration

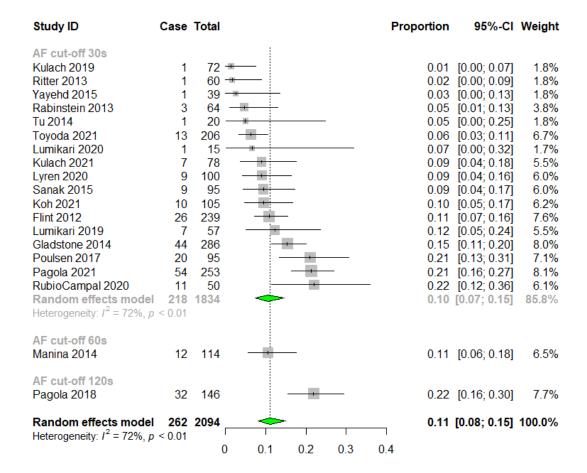


Figure S5. Pooled AF detection rates for MCOTs by AF cut-off duration

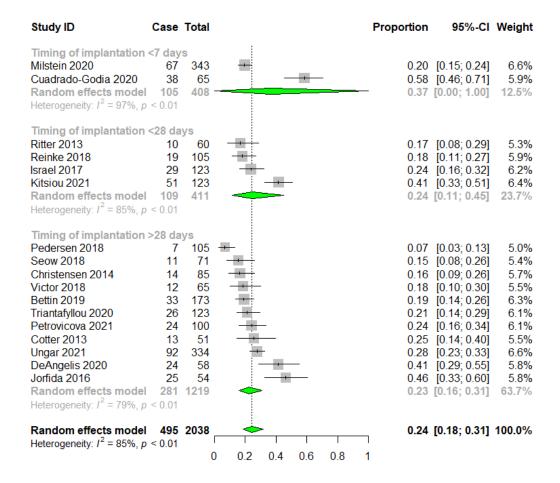


Figure S6. Pooled AF detection rates for ILRs by timing of device implantation

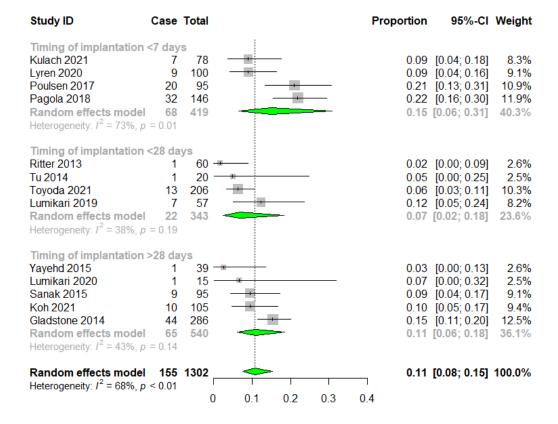


Figure S7. Pooled AF detection rates for MCOTs by timing of device implantation

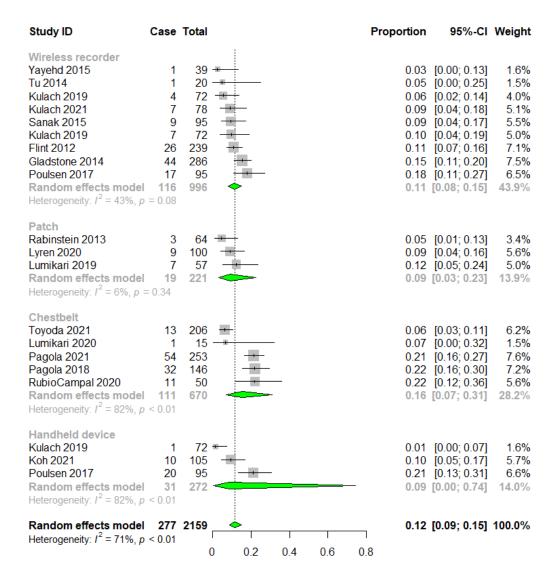


Figure S8. Pooled AF detection rates for MCOTs by type of device

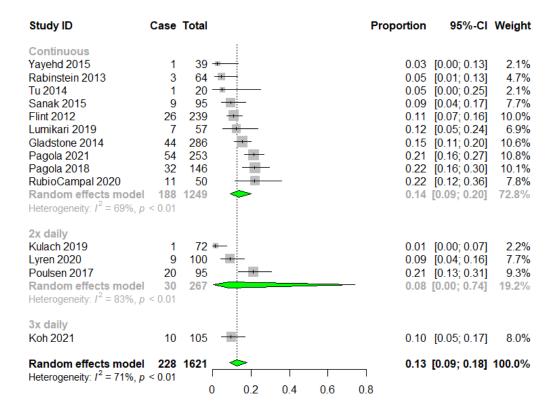


Figure S9. Pooled AF detection rates by frequency of monitoring at 28 days

Appendix IV: Comparison of study populations

Cohort characteristics	Studies using ILR	Studies using	Significantly
		МСОТ	different? (P value)
Total no of studies	23	19	-
No of participants	2870	2094	-
Average age	65.0 +/- 4.0	67.3 +/- 6.4	<0.0001
Average CHA ₂ DS ₂ -	3.3 +/- 1.5 (n=21)	2.2 +/- 2.2 (n=12)	<0.0001
VASc			
Timing of device	38.8 +/- 48.2	20.7 +/- 36.4	<0.0001
implantation	(n=17)	(n=13)	

Table S1. Comparison of study populations

Study ID	Monitorin g method	Duration of monitorin g	Sampl e size	No. of AF	Prevale nce of AF	Mean/ median age	CHA ₂ D S ₂ - VASc	NIHSS	Rankin	LVEF
Acampa 2019	Inpatient monitorin g	1 week	222	44	19.8%	70.4	5 (1.2)	NR	NR	NR
Bettin 2019	ILR	24 months	173	33	19.1%	61.4	4 (1.4)	NR	NR	NR
Brachma nn 2016	ILR	36 months	221	42	30%	61.6	2.96	1.6 (2.7)	NR	NR
Christens en 2014	ILR	18 months	85	14	20.7%	58.0	4	0 (range 0-1)	NR	NR
Cotter 2013	ILR	6 months	51	13	25.5%	52.0	3 (IQR 2-4)	NR	NR	NR
Cuadrad o-Godia 2020	ILR	30 months	65	38	58.5%	75.6	4.5 (IQR 4- 5)	2.2 (range 2-14)	0 (IQR 0-1)	NR
DeAngel is 2020	ILR	30 months	58	24	41%	68.1	4.4 (1.4)	4.4 (2.1)	NR	61.5 (4.0)
Flint 2012	MCOT	1 month	239	26	6.7%	64.6	NR	4.2 (4.5)	1.0 (0.1)	58.1 (6.4)

Fonseca 2014	Inpatient monitorin g	24h	264	17	20.8%	58.6	NR	13 (IQR 12)	NR	NR
Gladston e 2014	МСОТ	1 month	286	44	15.5%	72.5	3 (range 2-6)	NR	NR	NR
Israel 2017	ILR	12 months	123	29	23.6%	65.0	4.5 (1.3)	3	2 (IQR 2)	59.6 (2.4)
Jorfida 2016	ILR	36 months	54	25	46%	67.8	4.5 (1.2)	NR	NR	60 (6.1)
Jung 2020	Inpatient monitorin g	24h	125	32	25.6%	65.3	2.7 (1.5)	NR	NR	NR
Kitsiou 2021	ILR	36 months	123	51	41.4%	65.0	4.8	NR	NR	NR
Koh 2021	MCOT	1 month	105	10	9.5%	65.3	4 (2)	NR	NR	97 (12.6)
Kulach 2021	MCOT	1 month	72	1	1.4%	59.0	3.5 (1.6)	NR	NR	59 (4)
Kulach 2019	MCOT	7 days	78	7	9%	60.0	3.6	NR	NR	59 (4)
Lee 2015	Inpatient monitorin g	3 days	127	12	9.4%	66.0	NR	NR	NR	NR
Liantinio ti 2017	Inpatient monitorin g	24h	184	13	7%	57.0	5 (IQR 4-5)	6 (range 3-10)	NR	NR
Liantinio ti 2019	Inpatient monitorin g	24h	373	29	8%	60.0	3.8 (1.3)	4 (range 3-10)	NR	NR
Lips 2020	ILR	30 months	88	19	21.6%	66.5	4 (range 2-7)	NR	NR	NR
Lumikari 2019	MCOT	1 month	57	7	12.3%	64.5	3.5 (1.2)	4.3 (5)	1 (IQR 0-1)	NR
Lumikari 2020	МСОТ	2 weeks	15	1	6.7%	59. 5	NR	1.7 (2.4)	1 (IQR 0-1)	NR
Lyren 2020	МСОТ	1 month	100	9	9%	67.6	4.4 (1.9)	NR	NR	NR
Makimot o 2017	ILR	12 months	146	30	21%	62.0	4.1 (1.3)	NR	NR	NR

Manina 2014	MCOT	4 days	114	12	24.3%	63.1	NR	6 (2.0)	NR	NR
Milstein 2020	ILR	12 months	343	67	5% (30 days) 21% (1 year)	68	3.5 (1.7)	NR	NR	57 (6)
Muller 2017	ILR	12 months	90	16	18%	57.7	3.4 (1.7)	NR	NR	59.1 (5.5)
Pagola 2018	МСОТ	1 month	146	32	21.9%	76.0	5 (IQR 4-6)	5 (IQR 2-8)	NR	NR
Pagola 2021	MCOT	1 month	253	54	21.3%	74.4	NR	NR	NR	NR
Pedersen 2018	ILR	12 months	105	7	6.7%	65.4	NR	NR	NR	NR
Petrovic ova 2021	ILR	12 months	100	24	24%	70.1	3	6.9	NR	NR
Poli 2016	ILR	12 months	75	25	33.3%	66.4	5	NR	NR	NR
Poulsen 2017	МСОТ	1 month	95	20	21.1%	78	5	1	NR	NR
Rabinstei n 2013 (61)	MCOT	3 weeks	64	3	4.7%	67.9	NR	NR	NR	NR
Reinke 2018	ILR	24 months	105	19	18%	64.4	4 (IQR 3-6)	2 (IQR 1-5)	NR	NR
Riordan 2020	ILR	24 months	293	74	25%	67.5	5.1 (1.3)	NR	NR	NR
Ritter 2013	ILR, MCOT	12 months (ILR) 7 days (MCOT)	60	10 (ILR) 1 (MCO T)	17%	63.0	4 (IQR 3-5)	NR	NR	NR
RubioCa mpal 2020	MCOT	3 weeks	50	11	22%	69.0	4 (1.5)	NR	NR	NR
Sanak 2015	MCOT	3 weeks	95	9	9.5%	39.1	2.7 (1.7)	9 (range 3-18)	NR	NR
Seow 2018	ILR	12 months	71	11	12.9% (6 months) 15.2%	61.9	NR	10 (11.3)	NR	55

					(12 months					
Toyoda 2021	МСОТ	1 week	206	13	6.3%	71.0	4.2 (1.3)	NR	NR	64.1 (IQR 61- 70)
Triantafy llou 2020	ILR, Inpatient monitorin g	18 months (ILR) 24h (Inpatient monitorin g)	373 Holter ; 123 ILR/I CM	26 (ILR) 28 (Inpat ient monit oring)	7.5% (Holter) 21.1% (ICM)	60.0	3 (IQR 2-4)	3 (IQR 1-5)	NR	65.0 (6.7)
Tu 2014	МСОТ	3 weeks	20	1	5.0% (28 days), 20.0% (2 years)	66.0	2 (IQR 1-3)	4 (IQR 1-7)	NR	NR
Ungar 2021	ILR	24 months	334	92	27.5%	67.4	NR	3 (3.0)	NR	NR
Victor 2018	ILR	24 months	65	12	29.2%	65.4	NR	4 (4.8)	NR	NR
Yayehd 2015	MCOT	3 weeks	39	1	2.6%	48.0	NR	3.5 (4.3)	NR	NR

Table S2. Covariate Details in Study Population

Appendix V: Meta-regression

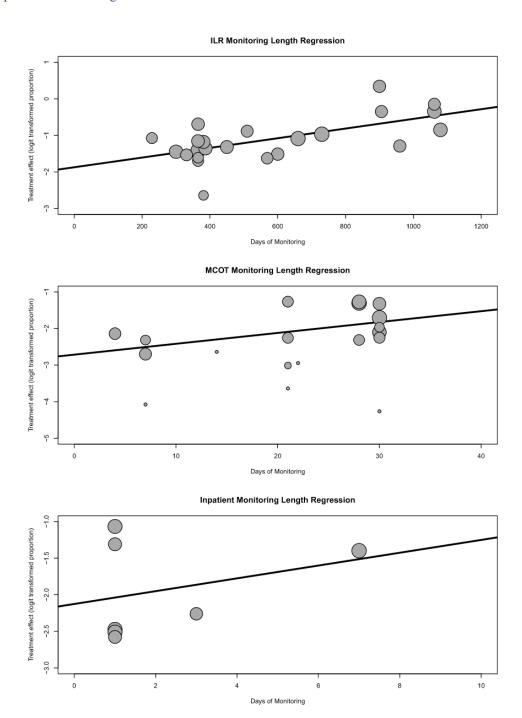


Figure S1. Meta Regression for length of ECG monitoring

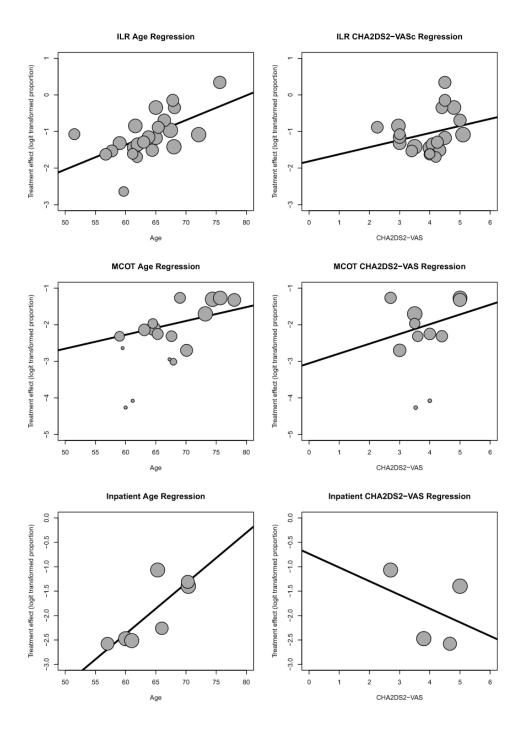


Figure S2. Meta Regression for mean patient age and mean CHA2DS2-VASc score

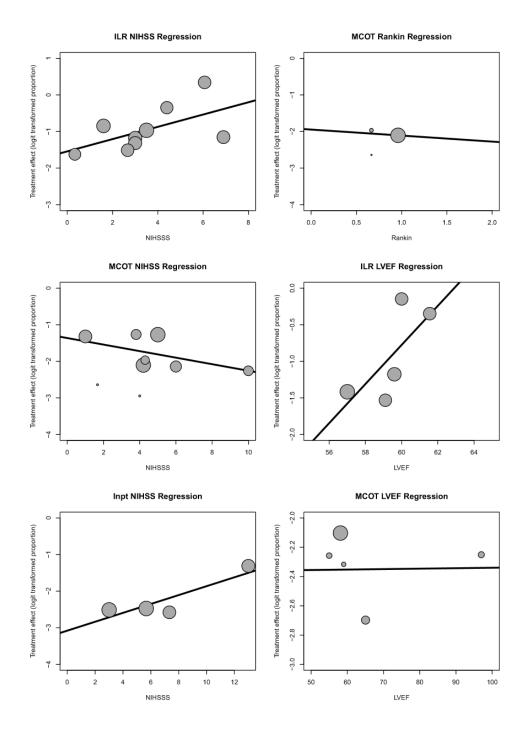


Figure S3. Meta Regression for mean patient NIHSS, Rankin, and LVEF

Appendix VI: Outlier identification

ECG	Study omitted	Subgroup	New pooled AF	$I^{2}(\%)$
monitoring			detection rate	
modality			(95% CI)	
ILR	Kitsiou 2021	Duration of monitoring 36	37.1% (0.7-98.0)	77.8
		months		
		Overall	18.4% (14.9-22.4)	86.1
	Cuadadro-	Duration of monitoring 30	30.6% (0.1-99.4)	84.4
	Godia 2020	months		
		Overall	18.2% (14.9-22.0)	85.2
	Both	Overall	17.7% (14.5–	83.4
			21.3)	
MCOT	Pagola 2021	Duration of monitoring	12.0% (8.2-17.1)	66.8
		<28 days		
		AF cut-off 30s	10.0% (7.1-13.7)	62.4
		Timing of implantation <7	15.8% (9.1-26.0)	64.6
		days		
		Overall	10.6% (7.8-14.4)	67.4

Table S1. New pooled AF detection rates after removal of outliers

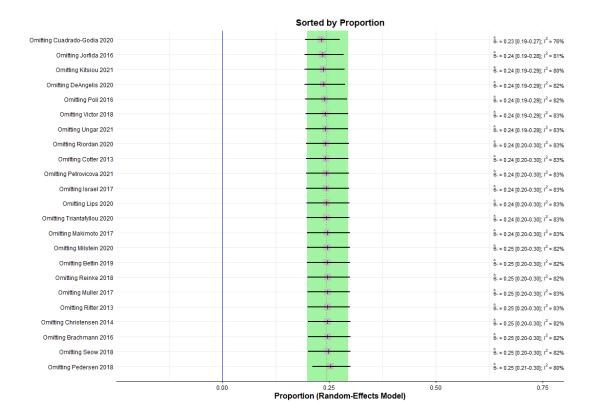


Figure S1. Leave-one-out analysis for ILRs for proportion

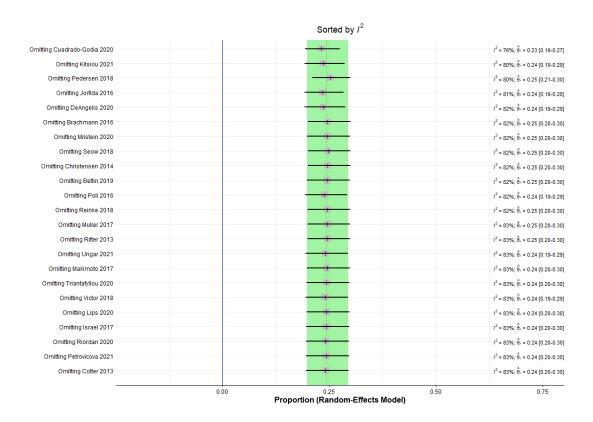


Figure S2. Leave-one-out analysis for ILRs for heterogeneity

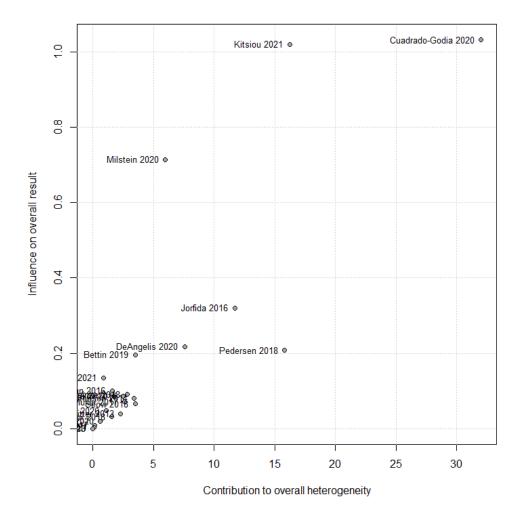


Figure S3. Baujat plot for ILRs

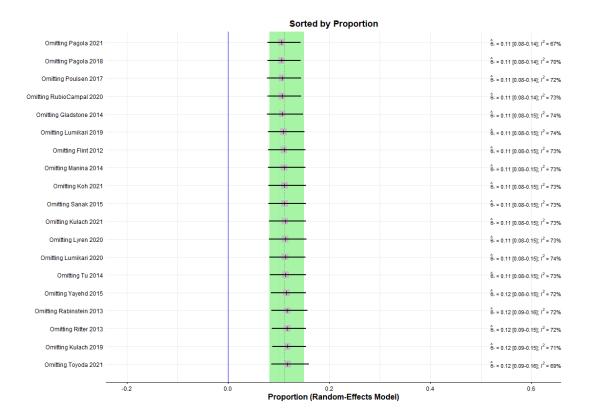


Figure S4. Leave-one-out analysis for MCOTs for proportion

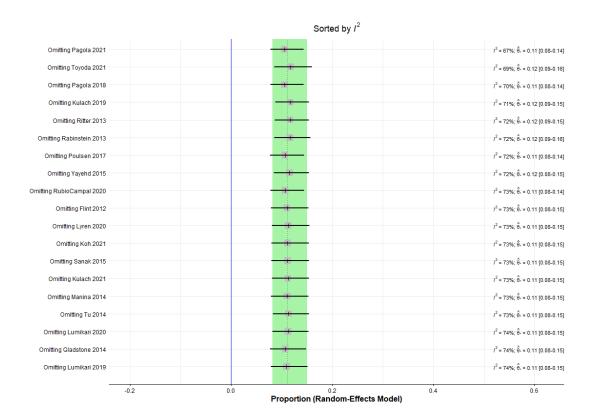


Figure S5. Leave-one-out analysis for MCOTs for heterogeneity

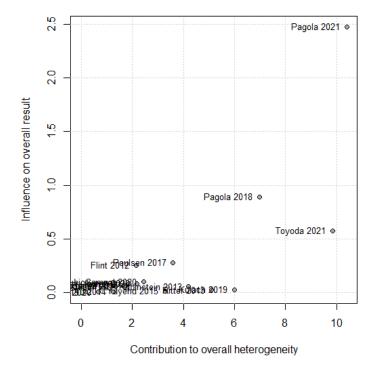


Figure S6. Baujat plot for MCOTs

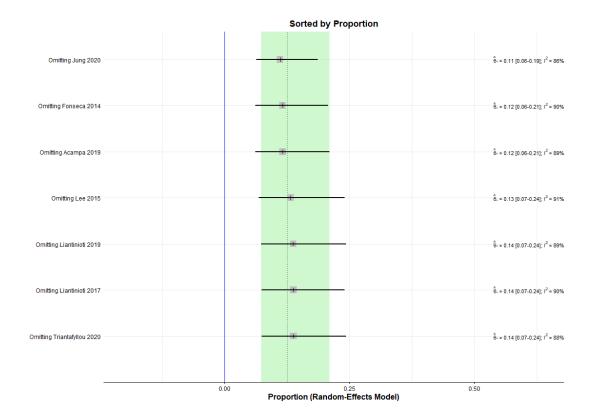


Figure S7. Leave-one-out analysis for Inpatient monitoring for proportion

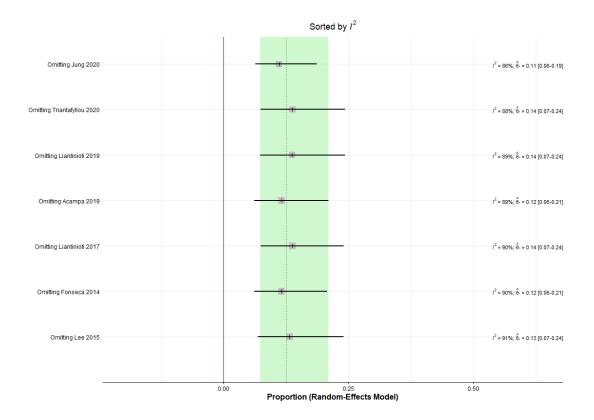


Figure S8. Leave-one-out analysis for Inpatient monitoring for heterogeneity

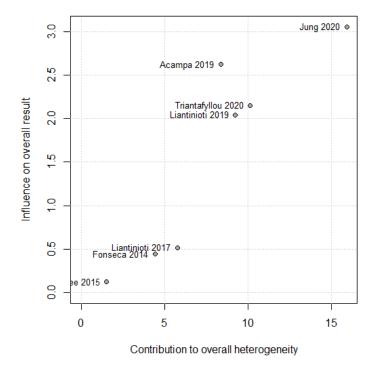


Figure S9. Baujat plot for Inpatient moniroting

Appendix VII: Quality assessment

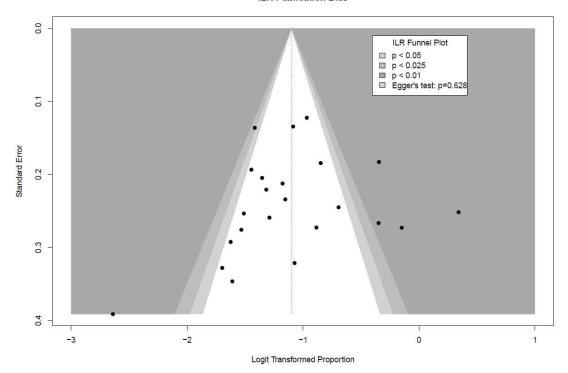
									Item			Risk of
Study ID	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	9	Item 10	Total	bias
Acampa 2019	0	1	1	0	1	1	1	1	1	1	8	Low
Bettin 2019	0	1	1	0	1	1	1	1	1	1	8	Low
Christensen 2014	0	1	1	1	1	1	1	1	1	1	9	Low
Cotter 2013	0	1	1	1	1	1	1	1	1	1	9	Low
Cuadrado-Godia												Low
2020	0	1	1	1	1	1	1	1	1	1	9	
DeAngelis 2020	0	1	1	1	1	1	1	1	1	1	9	Low
Fonseca 2014	0	0	1	1	1	1	1	1	1	1	8	Low
Israel 2017	0	1	1	1	1	1	1	1	1	1	9	Low
Jorfida 2016	0	1	1	0	1	1	1	1	1	1	8	Low
Jung 2020	0	1	1	1	1	1	1	1	1	1	9	Low
Kitsiou 2021	0	1	1	1	1	1	1	1	1	1	9	Low
Kulach 2019	0	1	1	0	1	0	1	0	1	1	6	Moderate

Kulach 2021	0	1	1	1	1	0	1	1	1	1	8	Low
Lee 2015	0	0	1	1	1	1	1	1	1	1	8	Low
Liantinioti 2017	0	1	1	1	1	1	1	1	1	1	9	Low
Liantinioti 2019	0	1	1	1	1	1	1	1	1	1	9	Low
Lips 2020	0	1	1	1	1	1	1	0	1	1	8	Low
Lumikari 2019	0	1	1	1	1	1	1	1	1	1	9	Low
Lumikari 2020	0	0	1	1	1	1	0	1	1	1	7	Moderate
Lyren 2020	1	1	1	1	1	1	0	1	1	1	9	Low
Makimoto 2017	0	1	1	0	1	1	1	1	1	1	8	Low
Manina 2014	0	1	1	1	1	1	1	1	1	1	9	Low
Milstein 2020	1	1	1	1	1	1	1	1	1	1	10	Low
Muller 2017	1	1	1	0	1	1	1	1	1	1	9	Low
Pagola 2018	1	1	1	1	1	1	0	0	1	1	8	Low
Pagola 2021	1	0	1	1	1	0	1	1	1	1	8	Low
Pedersen 2018	0	1	1	0	1	0	1	1	1	1	7	Moderate
Petrovicova 2021	0	1	1	0	1	1	1	1	1	1	8	Low

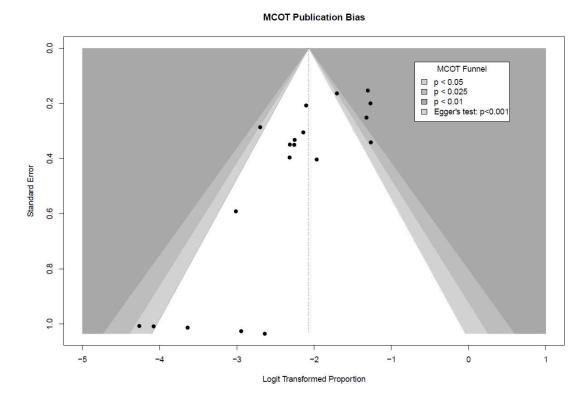
Poli 2016	0	1	1	1	1	1	1	0	1	1	8	Low
Poulsen 2017	0	1	1	1	1	1	0	1	1	1	8	Low
Rabinstein 2013	0	0	1	1	1	1	1	1	1	1	8	Low
Reinke 2018	0	1	1	0	1	1	1	1	1	1	8	Low
Riordan 2020	0	1	1	1	1	1	1	1	1	1	9	Low
Ritter 2013	0	1	1	0	1	1	1	1	1	1	8	Low
RubioCampal												Moderate
2020	0	0	0	0	1	1	1	1	1	1	6	
Sanak 2015	0	0	1	1	1	1	1	1	1	1	8	Low
Seow 2018	0	1	0	0	1	1	1	1	1	1	7	Moderate
Triantafyllou												Moderate
2020	0	1	1	0	1	1	1	0	1	1	7	
Tu 2014	0	0	1	1	1	1	1	1	1	1	8	Low
Victor 2018	0	1	1	1	1	1	1	0	1	1	8	Low
Yayehd 2015	0	0	1	1	1	0	0	1	1	1	6	Moderate
Flint 2012	1	1	1	0	1	0	1	1	1	1	8	Low

Toyoda 2021	1	1	1	1	1	1	1	1	1	1	10	Low
Ungar 2021	1	1	1	1	1	1	1	0	1	1	9	Low
Brachmann 2016	1	1	1	1	1	1	1	0	1	1	9	Low
Gladstone 2014	1	1	1	1	1	1	1	0	1	1	9	Low
Koh 2021	1	1	1	1	1	0	1	0	1	1	8	Low

≤4: High risk of bias


5-7: Moderate risk of bias

8-10: Low risk of bias


Table S1: Risk of bias assessment

Appendix VIII: Publication bias

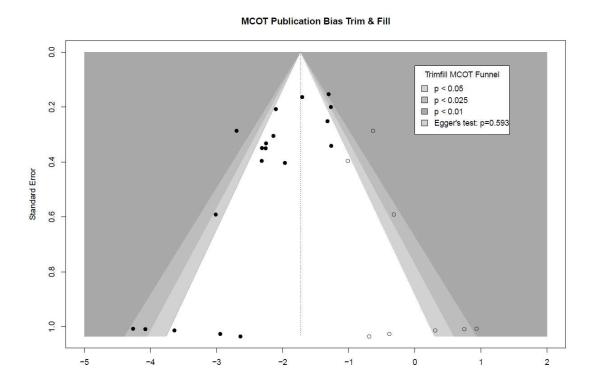

ILR Publication Bias

Figure S1. Funnel plot for the meta-analysis of atrial fibrillation proportion detected by implantable loop recorders

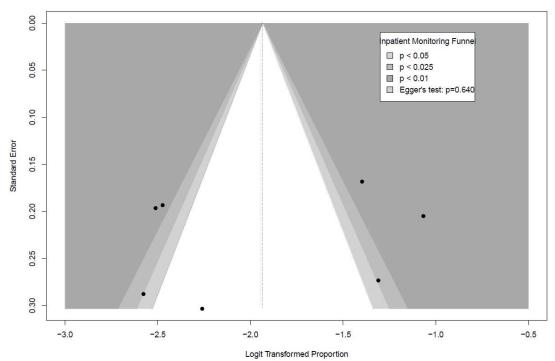

Figure S2. Funnel plot for the meta-analysis of atrial fibrillation proportion detected by Mobile Cardiac Outpatient Telemetry

Figure S3. Funnel plot for the meta-analysis of atrial fibrillation proportion detected by Mobile Cardiac Outpatient Telemetry with imputed studies by Trim & Fill method

Logit Transformed Proportion

Figure S4. Funnel plot for the meta-analysis of atrial fibrillation proportion detected by Inpatient Monitoring

Modality	Intercept (95% CI)	t	p
ILR	-0.784 (-3.90, 2.34)	-0.492	0.63
MCOT	-2.664 (-3.93, -1.39)	-4.113	0.0007
MCOT Trim & Fill	-0.404 (-1.87, 1.06)	-0.541	0.59
Inpatient Monitoring	-2.98 (-14.73, 8.77)	-0.497	0.64

Table S1: Egger's test results