PT - JOURNAL ARTICLE AU - Ishii, Masanobu AU - Kaikita, Koichi AU - Yasuda, Satoshi AU - Akao, Masaharu AU - Ako, Junya AU - Matoba, Tetsuya AU - Nakamura, Masato AU - Miyauchi, Katsumi AU - Hagiwara, Nobuhisa AU - Kimura, Kazuo AU - Hirayama, Atsushi AU - Nishihara, Eiichiro AU - Nakamura, Shinichiro AU - Matsui, Kunihiko AU - Ogawa, Hisao AU - Tsujita, Kenichi ED - , TI - Risk prediction score for clinical outcome in atrial fibrillation and stable coronary artery disease AID - 10.1136/openhrt-2023-002292 DP - 2023 May 01 TA - Open Heart PG - e002292 VI - 10 IP - 1 4099 - http://openheart.bmj.com/content/10/1/e002292.short 4100 - http://openheart.bmj.com/content/10/1/e002292.full SO - Open Heart2023 May 01; 10 AB - Objective Antithrombotic therapy is essential for patients with atrial fibrillation (AF) and stable coronary artery disease (CAD) because of the high risk of thrombosis, whereas a combination of antiplatelets and anticoagulants is associated with a high risk of bleeding. We sought to develop and validate a machine-learning-based model to predict future adverse events.Methods Data from 2215 patients with AF and stable CAD enrolled in the Atrial Fibrillation and Ischaemic Events With Rivaroxaban in Patients With Stable Coronary Artery Disease trial were randomly assigned to the development and validation cohorts. Using the random survival forest (RSF) and Cox regression models, risk scores were developed for net adverse clinical events (NACE) defined as all-cause death, myocardial infarction, stroke or major bleeding.Results Using variables selected by the Boruta algorithm, RSF and Cox models demonstrated acceptable discrimination and calibration in the validation cohort. Using the variables weighted by HR (age, sex, body mass index, systolic blood pressure, alcohol consumption, creatinine clearance, heart failure, diabetes, antiplatelet use and AF type), an integer-based risk score for NACE was developed and classified patients into three risk groups: low (0–4 points), intermediate (5–8) and high (≥9). In both cohorts, the integer-based risk score performed well, with acceptable discrimination (area under the curve 0.70 and 0.66, respectively) and calibration (p>0.40 for both). Decision curve analysis showed the superior net benefits of the risk score.Conclusions This risk score can predict the risk of NACE in patients with AF and stable CAD.Trial registration numbers UMIN000016612, NCT02642419.Data are available on reasonable request. The data underlying this article will be shared on reasonable request to the corresponding author.