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ABSTRACT
Objective  Red cell distribution width (RDW) is an 
enigmatic biomarker associated with the presence and 
severity of multiple cardiovascular diseases (CVDs). It is 
unclear whether elevated RDW contributes to, results from, 
or is pleiotropically related to CVDs. We used contemporary 
genetic techniques to probe for evidence of aetiological 
associations between RDW, CVDs, and CVD risk factors.
Methods  Using an electronic health record (EHR)-based 
cohort, we built and deployed a genetic risk score (GRS) 
for RDW to test for shared genetic architecture between 
RDW and the cardiovascular phenome. We also created 
GRSs for common CVDs (coronary artery disease, heart 
failure, atrial fibrillation, peripheral arterial disease, venous 
thromboembolism) and CVD risk factors (body mass index 
(BMI), low-density lipoprotein, high-density lipoprotein, 
systolic blood pressure, diastolic blood pressure, serum 
triglycerides, estimated glomerular filtration rate, diabetes 
mellitus) to test each for association with RDW. Significant 
GRS associations were further interrogated by two-sample 
Mendelian randomisation (MR). In a separate EHR-based 
cohort, RDW values from 1-year pre-gastric bypass 
surgery and 1–2 years post-gastric bypass surgery were 
compared.
Results  In a cohort of 17 937 subjects, there were no 
significant associations between the RDW GRS and CVDs. Of 
the CVDs and CVD risk factors, only genetically predicted BMI 
was associated with RDW. In subsequent analyses, BMI was 
associated with RDW by multiple MR methods. In subjects 
undergoing bariatric surgery, RDW decreased postsurgery and 
followed a linear relationship with BMI change.
Conclusions  RDW is unlikely to be aetiologically 
upstream or downstream of CVDs or CVD risk factors 
except for BMI. Genetic and clinical association analyses 
support an aetiological relationship between BMI and RDW.

INTRODUCTION
Red cell distribution width (RDW), a measure 
of blood cell (RBC) volume heterogeneity, is 
consistently associated with the presence and 
severity of diverse cardiovascular diseases 
(CVDs) including coronary artery disease 
(CAD), heart failure (HF) and atrial fibril-
lation (AF).1–5 However, it is unclear if RBC 

volume heterogeneity is mechanistically 
involved in the pathogenesis of CVDs and, 
elevated RDW is often presumed to be an 
epiphenomenon that integrates disparate 
underlying pathophysiological processes 
rather than an aetiological factor in disease, 
per se. However, there have not been formal 
analyses using genetic associations to assess 
for evidence for aetiological relationships 
between RDW, CVDs, and CVD risk factors.

We sought to use genetic risk score (GRS) 
and Mendelian randomisation (MR) anal-
yses to disentangle the complex relation-
ships between RDW, CVDs, and CVD risk 
factors. These methods can detect shared 
genetic architecture and provide evidence 
for aetiological relationships between traits. 

Key questions

What is already known about this subject?
►► Red cell distribution width (RDW) is associated 
with the presence and severity of all major car-
diovascular diseases via epidemiological studies. 
Epidemiological studies are subject to confound-
ing whereas genetic approaches provide means to 
analyse associations independently of many poten-
tial confounders.

What does this study add?
►► Our findings provide evidence for the currently un-
supported (but widely held) belief that RDW is not 
aetiologically associated with cardiovascular diseas-
es. Also, we found that RDW did not share a genetic 
architecture with any tested cardiovascular disease 
nor any tested cardiovascular disease risk factor 
other than body mass index (BMI). Furthermore, this 
study provides evidence for an aetiological relation-
ship between BMI and RDW.

How might this impact on clinical practice?
►► Through this study RDW can be better interpreted 
by clinicians as an integrative biomarker with both 
benign and pathological causes of RDW variation.
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If RBC volume heterogeneity is an aetiological factor in 
CVDs, genetically predicted RDW should associate with 
CVDs. Therefore, we constructed GRSs for RDW, CVDs, 
and CVD risk factors in a well-phenotyped cohort and 
conducted analyses to test for shared genetic architecture 
between traits. Among the traits with evidence of shared 
genetic architecture, we used MR to assess whether there 
was evidence for an aetiological relationship.

METHODS
Population
The genetic study population included individuals 
derived from BioVU, a Vanderbilt University Medical 
Center (VUMC) resource linking deidentified electronic 
health records to DNA samples, which requires informed 
consent for subject enrolment. Informed consent was 
waived for this study given all data had been deidentified. 
All subjects had previously been genotyped using the Illu-
mina Infinium Multi-Ethnic Genotyping Array (MEGA) 
platform. The population was limited to subjects of 
European ancestry because there are few subjects of 
different continental ancestry in BioVU with the relevant 
phenotypes. Continental ancestry was determined using 
principal components. Patients and the public were not 
involved in the design, conduct, reporting or dissemina-
tion plans of this research project.

Clinical data
All clinical data, including demographics, diagnosis codes, 
procedure codes, body mass index (BMI), and laboratory 
values, were extracted from the VUMC deidentified elec-
tronic health record. Similar to previous studies, included 
individuals were required to have  ≥2 RDW measure-
ments separated by at least 2 years.2 These criteria were 
applied to account for single, high-acuity interactions 
with the healthcare system that could disproportionately 
contribute outlier RDW measurements. RDW values were 
extracted from complete blood counts obtained during 
routine clinical care at VUMC or affiliated outpatient 
clinics on Sysmex haematology analysers. For each indi-
vidual, RDW was summarised as median value and unre-
alistic outliers were excluded as previously done.2

Genetic data
All subjects were genotyped using the Illumina MEGA 
platform. Quality control was conducted using PLINK 
V.1.9 and included reconciling strand flips, identifying 
duplicate and related individuals (one of each pair of 
individual with pi-hat  >0.05 was randomly excluded), 
and applying filters at the sample (missingness rate <1%) 
and SNP (missingness rate <1%; Hardy-Weinberg p<10−6) 
level.6 Data were imputed using the Michigan Imputa-
tion Server along with the 10/2014 release of the 1000 
Genomes phase 3 cosmopolitan reference haplotypes.7 
SNPs with a minor allele frequency >1% after imputation 
were retained for analyses. Principal components were 
generated using the SNPRelate package.8

GRS construction
We used publicly available summary statistics of published 
large-scale genome-wide association studies (GWAS) to 
construct GRSs for RDW, selected CVDs, and CVD risk 
factors. In the case that there were multiple GWASs avail-
able for a given trait, we used the study with the largest 
number of participants. All GWASs populations were 
majority, if not exclusively, of European continental 
ancestry. Specifically, summary statistics were obtained 
for: RDW,9 CAD,10 HF,11 peripheral arterial disease,12 
venous thromboembolism13 and AF.14 Similarly, GRSs 
were also produced for CVD risk factors including blood 
pressure (systolic and diastolic),15 lipids (low-density lipo-
protein, high-density lipoprotein, triglycerides),16 BMI,17 
type 2 diabetes mellitus,18 and estimated glomerular 
filtration rate.19 For clinical disease GWASs, collected 
summary statistics were genetic variant, effect allele, OR, 
and p value. For laboratory and blood pressure GWASs, 
collected summary statistics were genetic variant, effect 
allele, beta value, and p value. Variants included in the 
GRSs were required to have a strength of association p 
value in the original GWAS that was at or below the cut-
off for genome-wide significance (5×10–8). Variants were 
excluded from analyses if in linkage disequilibrium with 
a lead variant (PLINK clumping performed using cutoffs 
of R2 >0.1 or within 250 kb).20 For each subject, the GRS 
value was calculated using PRSice2.21 The RDW GRS 
was validated against measured median RDW values by 
ordinal regression. The CVD and CVD risk factor GRSs 
were each validated against their respective phenotype 
as determined by phecodes (hierarchical groupings of 
ICD9 and ICD10 codes) using logistic regression adjusted 
for age, sex, and principal components 1–3.22

GRS and MR analyses
We used a two-stage strategy to detect and characterise 
relationships between RDW, CVDs, and CVD risk factors. 
In the first stage, we conducted a series of analyses using a 
GRS for the predictor of the dependent variable adjusted 
for age, sex, and principal components 1–3. Signifi-
cant associations (after Bonferroni correction) in these 
analyses were interpreted as indicating shared genetic 
architecture between the two traits. In the second stage, 
significant associations detected via GRS analyses were 
selected for formal MR. In MR analyses, each genetic 
variant is used as an instrumental variable rather than a 
GRS (which is the sum of the effects of multiple genetic 
variants). Using each genetic variant as an instrument 
variable allows for testing for heterogeneity of effect and 
horizontal pleiotropy.23

To evaluate for associations between RDW and the 
full range of CVDs, we used the validated RDW GRS as 
the predictor in a targeted phenome scan. The analysis 
was implemented using the R package ‘PheWAS’ which 
creates clinical phenotypes based on hierarchical group-
ings of ICD9 and ICD10 codes (‘phecodes’) as previously 
described.22 Analyses were limited to 171 phenotypes in 
the ‘circulatory system’ group and with at least 60 cases. 
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The Bonferroni adjusted p value for cardiovascular 
phenotypes was 0.05/(cardiovascular phenotypes with 
at least 60 cases). In secondary phenome-wide analyses 
(PheWAS) significance was considered 0.05/(phenotypes 
with at least 60 cases). Our PheWAS analyses used logistic 
regression adjusted for age at time of last ICD code, sex, 
and principal components 1–3.

The relationship of common CVDs and conventional 
CVD risk factors to RDW was assessed by testing the asso-
ciations between a suite of GRSs for CVDs and CVD risk 
factors with measured RDW. The p value for significance 
was set to a Bonferroni corrected p value of 0.004 since 
13 GRSs were tested against median RDW. Because RDW 
has a non-normal distribution, we used ordinal regres-
sion adjusting for age at time of last RDW measurement, 
sex, and principal components 1–3.

Significant associations from GRS analyses were carried 
forward for MR using two-sample inverse-weighted 
random-effects modelling. The genetic variants used 
in MR were the same variants used to build the GRSs, 
but more stringently filtered by distance (1000 kb) and 
R2 (>0.01). More stringent filtering was used since MR 
assumes complete independence of the included genetic 
variants. Additional MR methods that are more robust to 
pleiotropy, including simple median, weighted median, 
and MR-Egger were used to confirm associations. A non-
zero intercept in MR-Egger analysis with a p<0.1 was 
considered evidence of horizontal pleiotropy. Heteroge-
neity was assessed using Cochran’s Q statistic. MR anal-
yses were performed using the MR R package.24

RDW pregastric and postgastric bypass
In follow-up analyses, we sought to assess whether changes 
in BMI were associated with changes in RDW using an 
orthogonal, complementary approach. We searched 
Vanderbilt’s deidentified electronic health record for 
individuals that had a BMI of at least 35 kg/m2, underwent 
gastric bypass surgery (CPT code 43644), and had RDW 
and BMI measurements in the year preceding surgery 
and 1–2 years postsurgery. For each individual, median 
RDW in the year preceding surgery was compared with 
median RDW 1–2 years postsurgery. The Friedman test 
was used for comparison of pregastric and postgastric 
bypass surgery RDW measurements. The relationship 
between change in BMI and change in RDW was assessed 
using ordinal regression in subjects who lost between 40 
and 0 kg/m2.

RESULTS
Study cohort for genetic analyses
The cohort used for targeted and phenome-wide associ-
ation analyses consisted of 17 937 subjects (from 33 031 
available subjects: 527 removed for non-European 
ancestry, 2923 removed for relatedness, 11 644 removed 
for missing RDW values). Clinical characteristics of the 
cohort are presented in table 1.

RDW GRS validation and associations with the cardiovascular 
phenome
The RDW GRS was associated with median RDW (R=0.13, 
p<0.0001) in validation analyses. Targeted cardiovas-
cular PheWAS analyses (including 141 phenotypes with 
at least 60 cases) no associations between the RDW 
GRS and any CVD (figure  1, all p>0.01; Bonferroni p 
value for significance: 4×10–4). In secondary phenome-
wide analyses of 1206 phenotypes with at least 60 cases, 
there were no non-haematological phenotypes associ-
ated with the RDW GRS (online supplemental figure 
2), including obesity (phecode 278.1, OR 1.01, p=0.65), 
hyperlipidaemia (phecode 272.1, OR 0.99, p=0.26), 
diabetes mellitus (phecode 250, OR 1.02, p=0.30), or 
chronic renal failure (phecode 585.3, OR 1.02, p=0.3). 
Full tabular results available in online supplemental 
table 1.

Associations between GRS for CVD and CVD risk factors and 
RDW
We next tested GRSs for CVD and CVD risk factors for 
association with median RDW (figure 2). Each GRS was 
first validated by testing for its association with the pheno-
type it was constructed to predict (online supplemental 
table 2), p<0.0001 for all). After adjusting for multiple 
comparisons, only the BMI GRS was associated with RDW 
(beta  ±SEM: 0.08±0.01 arbitrary units (given ordinal 
regression was used) per kg/m2, p<0.0001).

MR analysis of BMI effects on RDW
Two sample inverse-variance weighted random-effects 
modelling demonstrated that genetically predicted 
BMI was positively associated with genetically predicted 
median RDW (figure 3). Similar results were seen in sensi-
tivity analyses using other MR methods (table 2). There 
was no evidence of heterogeneity (Cochran’s Q statistic 
p=0.23) nor horizontal pleiotropy (MR-Egger intercept 
0.001, p=0.91).

Table 1  Genetic cohort characteristics

n 17 937

Sex, male (%) 8091 (45.1)

Age in years, mean (SD) 61.4 (15.7)

Hypertension, n (%) 10 098 (62.4)

Ischaemic heart disease, n (%) 5128 (39.7)

Atrial fibrillation, n (%) 3049 (26.3)

Congestive heart failure, n (%) 2671 (17.6)

Peripheral vascular disease, n (%) 1042 (7.5)

Other venous embolism and thrombosis, n (%) 1076 (8.3)

Hyperlipidaemia, n (%) 8572 (52.5)

Diabetes mellitus, n (%) 3895 (24.7)

Chronic renal failure, n (%) 2323 (16.7)

Obesity, n (%) 2775 (17.6)
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RDW decreases post gastric bypass surgery
We identified 1442 subjects who underwent gastric 
bypass surgery (92% female, 81% white, 17% black, 
median 47 years old (IQR: 39–55 years old)) and had 
RDW values available in the year proceeding surgery and 
1–2 years postsurgery. RDW decreased from a mean±SD 
of 14.0%±1.2% presurgery to 13.5%±1.0% postsurgery 
(figure 4). BMI decreased in this cohort by a mean±SD of 
15.9±5.2 kg/m2. The magnitude of change in BMI after 
surgery correlated with and the magnitude RDW change 
(R=0.09, p=0.0007).

Figure 1  Red cell distribution width (RDW) genetic risk 
score (GRS) in a targeted cardiovascular phenome-wide 
association study. Each dot represents a cardiovascular 
phenotype plotted at the intersection of magnitude of effect 
of RDW GRS (x-axis) and strength of association (y-axis). 
No phenotypes approached Bonferroni corrected p value 
(represented by dashed line) for significant association 
by logistic regression adjusted for age, sex and principal 
components 1–3.

Figure 2  The association of cardiovascular disease (CVD) 
and CVD risk factor genetic risk scores with median red cell 
distribution width (RDW) values. Each Genetic Risk Score 
(GRS) was tested by ordinal regression for association 
with median RDW values adjusted for age at last RDW 
measurement, sex and principal components 1–3. Because 
ordinal regression was used, beta values do not represent 
actual units. RDW, red cell distribution width. AFib, atrial 
fibrillation, CAD, coronary artery disease; DBP, diastolic 
blood pressure; DM, diabetes mellitus; eGFR, estimated 
glomerular filtration rate; HDL, high density lipoprotein; HF, 
heart failure; LDL, low density lipoprotein; PAD, peripheral 
arterial disease; SBP, systolic blood pressure; VTE, venous 
thromboembolism.

Figure 3  Mendelian randomisation of body mass index 
(BMI) supports that BMI is aetiologically associated with 
higher median lifetime RDW value (medRDW). Each point 
represents a single genetic variant plotted at intersection of 
its beta value for association with BMI and RDW with SEs. 
Inverse-weighted regression modelling p value and fit line 
displayed. Note, because ordinal regression was used to 
establish RDW ~BMI genetic variant relationship, Y axis does 
not represent actual units.

Table 2  Outputs from multiple Mendelian randomisation 
(MR) methods using genetic variants associated with body 
mass index (BMI) as instrument variables to test for genetic 
evidence of an aetiological relationship between BMI and 
red cell distribution width

Method Estimate SE P value

Simple median 0.5 0.13 <0.001

Weighted median 0.55 0.14 <0.001

Inverse weighted median 0.52 0.09 <0.001

MR-egger 0.5 0.22 0.025

(MR-egger intercept) 0.001 0.006 0.91

All models used random-effects modelling.
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DISCUSSION
We used GRS and MR analyses in a deeply phenotyped 
cohort to probe for shared genetic architecture and 
evidence of aetiological relationships between RDW, CVDs, 
and CVD risk factors. A GRS for RDW was not associated 
with any CVD or CVD risk factor. Analyses using GRSs for 
CVDs and common CVD risk factors demonstrated that 
only BMI shared genetic architecture with RDW. MR anal-
yses provided evidence supporting an aetiological rela-
tionship between BMI and RDW. That relationship was 
further supported by an orthogonal clinical analysis among 
subjects who underwent gastric bypass surgery that revealed 
a linear relationship between change in BMI and change in 
RDW presurgery and postsurgery. Together, these analyses 
support that RDW is unlikely to be aetiologically upstream 
or downstream from CVDs or common CVD risk factors 
with the exception of BMI.

A previous study investigated the aetiological relation-
ships between RDW and disease; Ulrich et al used MR 
to demonstrate that there was no evidence to suggest 
a role for RDW in the aetiology of pulmonary arterial 
hypertension.25 That study used genetically instrumented 
RDW as a surrogate for iron status and concluded that 
although iron deficiency is epidemiologically associated 
with pulmonary arterial hypertension, iron deficiency is 
unlikely to contribute to the development of the disease. 
Like pulmonary arterial hypertension, multiple CVDs 
and CVD risk factors tested in our analyses are also epide-
miologically associated with iron deficiency.26 Similarly 
to the Ulrich et al study, our targeted and phenome-wide 
PheWAS analyses of the RDW GRS demonstrate that RDW 
is unlikely to share significant genetic architecture (and 
by extension, is unlikely to have aetiological relationships 
with) any non-haematological clinical phenotypes.

RDW and BMI have been linked by multiple studies, 
though none have provided evidence for a potential aetio-
logical relationship between the two.27–29 We used the two 
orthogonal methods of MR and a retrospective clinical 

analysis of preweight and postweight loss intervention 
to assess whether BMI may be aetiologically related to 
elevated RDW. MR analyses implicated BMI with elevated 
RDW, and this conclusion was further supported by the 
observed average decrease of 0.5% in RDW 1–2 years 
postgastric bypass. While both methods have limitations, 
our confidence in MR analyses is increased by the use 
of well-validated genetic variants associated with BMI as 
instruments, concordance of results across multiple MR 
methods, and lack of evidence for horizontal pleiotropy. 
Moreover, the gastric bypass analysis was biased toward 
the null since nearly half of gastric bypass subjects are 
expected to develop RDW-raising vitamin deficiency 
anaemia following surgery.30 Of course, many physiolog-
ical changes occur postgastricbypass surgery including 
changes in insulin sensitivity, blood pressure, etc, so 
BMI change itself cannot be isolated as the mechanism 
leading to RDW change in this analysis.

There are multiple potential mechanistic links between 
RDW and BMI. One is that both BMI and RDW have been 
linked to red blood rheology and rigidity.31 32 Elevated BMI 
is known to induce changes in RBC flexibility, bone marrow 
adipocyte content, and erythropoietin signalling, all of 
which may affect RDW.32 33 Additionally, BMI-associated 
chronic inflammation has been hypothesised to be a mech-
anistic link between BMI and RBC health; however, recent 
studies have detected no significant correlation between 
RDW and inflammatory markers in obese patients.28 29 Thus, 
future studies are needed to explore the mechanism(s) of 
BMI-induced RBC volume variance.

Our study has some limitations. The relative weak and 
variable predictive power of genetic predictors used 
could have led to failure to detect true associations due 
to power. Additionally, all assumptions of MR experi-
ments cannot be empirically tested and can therefore 
provide evidence for, but not definitive proof of, causality 
between phenotypes. Given the subjects studied was of 
European descent, our findings may not be generalisable 

Figure 4  Red cell distribution width (RDW) decreases post bypass surgery. (A) Median RDW values obtained in the year 
preceding surgery were compared with median RDW values 1–2 years after surgery. Comparison made using Friedman test 
(n=1574). (B) Dose response of delta RDW from delta BMI compared using ordinal regression in subjects who lost between −40 
and 0 kg/m2 (n=1439). BMI, body mass index.
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to other populations. Smoking, a strong risk factor for 
CVDs, is a poorly ascertained risk factor via the electronic 
medical record and thus was not included in our anal-
yses. By not being able to include smoking in our models, 
we may have missed interactions between smoking and 
RDW, CVDs, and CVD risk factors.

In conclusion, we found no genetic evidence for aeti-
ological relationships between RDW and CVDs. This 
finding demonstrates that the aetiology of RDW variation 
is what is important to CVD biology: not the state of RBC 
population volume variability itself. Genetic and clinical 
evidence supports an aetiological relationship between 
increased BMI and elevated RDW. Further studies are 
needed to elucidate the mechanism(s) underlying the 
BMI-RDW relationship and the relevance of elevated 
RDW to obesity-related CVD risk.
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Supplemental Table 2  

Validation of each genetic risk score for a cardiovascular disease or cardiovascular disease risk factor 
against predicted phenotype 

Genetic risk score 
(GRS) 

Number of 
genetic variants PheWAS Phenotype 

OR (per 
standard 

deviation GRS) 
P 

Coronary artery 
disease 24 “Coronary 

atherosclerosis” 1.25 2x10-23 

Heart failure with 
reduced ejection 

fraction 
7 “Congestive heart 

failure (CHF) NOS” 1.16 4x10-11 

Peripheral arterial 
disease 12 “Atherosclerosis of the 

extremities” 1.24 2x10-7 

Venous 
thromboembolism 20 “Deep vein thrombosis 

[DVT]” 1.36 4x10-18 

Atrial fibrillation 63 “Atrial fibrillation and 
flutter 1.26 1x10-20 

Systolic blood 
pressure 127 “Hypertension” 1.12 3x10-9 

Diastolic blood 
pressure 184 “Hypertension” 1.09 1x10-6 

Low-density 
lipoprotein 64 “Hypercholesterolemia” 1.24 3x10-20 

High-density 
lipoprotein 76 “Hypercholesterolemia” 0.9 2x10-5 

Triglycerides 
 75 “Hyperglyceridemia” 1.32 6x10-5 

Body mass index 1027 “Obesity” 1.42 1x10-59 

Type 2 diabetes 
mellitus 92 “Type 2 diabetes” 1.38 2x10-63 

Estimated 
glomerular filtration 

rate 
65 “Chronic renal failure 

[CKD]” 0.87 1x10-9 
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Supplemental Figure S1: Full phenome-wide association studies of RDW GRS revealed no significant non-
hematologic phenotype associations with RDW GRS.  Dashed line represents Bonferroni corrected P value 
threshold determined by logistic regression. 
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