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ABSTRACT
A recent retrospective study has provided evidence that 
COVID-19 infection may be notably less common in 
those using supplemental melatonin. It is suggested that 
this phenomenon may reflect the fact that, via induction 
of silent information regulator 1 (Sirt1), melatonin can 
upregulate K63 polyubiquitination of the mitochondrial 
antiviral-signalling protein, thereby boosting virally 
mediated induction of type 1 interferons. Moreover, Sirt1 
may enhance the antiviral efficacy of type 1 interferons 
by preventing hyperacetylation of high mobility group box 
1 (HMGB1), enabling its retention in the nucleus, where 
it promotes transcription of interferon-inducible genes. 
This nuclear retention of HMGB1 may also be a mediator 
of the anti-inflammatory effect of melatonin therapy in 
COVID-19—complementing melatonin’s suppression of 
nuclear factor kappa B activity and upregulation of nuclear 
factor erythroid 2-related factor 2. If these speculations 
are correct, a nutraceutical regimen including vitamin D, 
zinc and melatonin supplementation may have general 
utility for the prevention and treatment of RNA virus 
infections, such as COVID-19 and influenza.

MELATONIN SUPPLEMENTATION MAY REDUCE 
RISK FOR COVID-19
A retrospective analysis of 791 intubated 
patients with COVID-19 has found that, after 
adjustment for pertinent demographics and 
comorbidities, those treated with melatonin 
had a markedly lower risk for mortality (HR: 
0.131, 95% CI: 0.076 to 0.223)—suggestive of 
a profound anti-inflammatory benefit.1 Such 
an effect might be anticipated, in light of 
melatonin’s ability to upregulate expression 
of silent information regulator 1 (Sirt1)—a 
deacetylase that is known to suppress the 
activity of the proinflammatory nuclear factor 
kappa B (NF-kappaB) transcription factor—
and also upregulate nuclear factor erythroid 
2-related factor 2 (Nrf2), which promotes 
the transcription of a range of antioxidant 
proteins.2–4 Moreover, recent epidemiology 
suggests that melatonin usage may reduce 
the risk for contracting COVID-19. A recent 
retrospective study, examining data from 
26 799 subjects in a COVID-19 registry and 

using propensity score matching to account 
for a range of covariates, found that current 
supplementation with melatonin was associ-
ated with a significant 28% reduction in risk 
for serologically detectible COVID-19 infec-
tion. Among Black Americans, this reduction 
in risk was a remarkable 52% (OR=0.48, 95% 
CI 0.31 to 0.75).5 The basis of this decrease in 
risk for COVID-19 is unclear, especially since 
Sirt1 activity, which melatonin promotes, 
is known to transcriptionally upregulate 
expression of ACE2—the cellular membrane 
receptor for COVID-19.6 7

MELATONIN-INDUCED SIRT1 MAY BOOST 
VIRALLY MEDIATED MITOCHONDRIAL ANTIVIRAL-
SIGNALLING (MAVS) ACTIVATION
Here is a possible explanation. Melatonin, 
via its membrane receptors, induces nuclear 
translocation of the transcription factor 
retinoid-related orphan receptor alpha 
(RORα); RORα, in turn, promotes transcrip-
tion of the gene encoding the clock tran-
scription factor brain and muscle ARNT-like 
1 (Bmal1). Bmal1 upregulates transcription-
ally the expression of a number of proteins, 
including Sirt1 and Nrf2.2 8 9 The MAVS 
protein is a key mediator in the pathway of 
double-strand RNA sensing that leads to 
activation of interferon regulatory factor 3 
(IRF3) and induction of type 1 interferons; 
its K63 polyubiquitination via TRIM31 trig-
gered by upstream detectors of cytosolic 
double-stranded RNA, such as melanoma 
differentiation-associated protein 5 and RIG1, 
enable it to form multimers that promote 
activating phosphorylation of IRF3, which 
in turn induces the type 1 interferons.10–12 
But the ubiquitinase ovarian tumour ubiq-
uitinase 3 (OTUD3) opposes this activation 
by deubiquitinating MAVS.13 The activity of 
OTUD3 in this regard hinges on acetylation 
of its Lys129; Sirt1 can remove this acetyl 
group, turn off OTUD3 activity and thereby 
upregulate viral activation of MAVS and type 
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1 interferon induction.13 For reasons still unclear, RNA 
viral infection causes Sirt1 to associate with OTUD3, such 
that the latter is deacetylated and thereby inactivated, 
enabling the K63 polyubiquitination of MAVS and subse-
quent multimer formation.13 figure 1 attempts to clarify 
these relationships.

The net effect of Sirt1 on interferon-mediated anti-
viral immunity is however complicated by the fact that 
Sirt1 inhibits NF-kappaB’s transcriptional activity; 
NF-kappaB also functions downstream from MAVS to 
promote the induction of type 1 interferons.11 14 15 The 
cellular response to RNA viruses typically activates IRF3, 
NF-kappaB, ATF2 and c-Jun, all of which can bind to the 
promoter of the interferon-β gene and promote its tran-
scription. However, there is evidence that activation of 
IRF3, in the absence of NF-kappaB, ATF2 or c-Jun acti-
vation, can drive transcription of the interferon-β gene.16 
Notably, in HEK293T cells infected with Sendai virus, 
transfection with Sirt1 more than doubles the mRNA 
expression of interferon-β1, despite the potential inhibi-
tory impact of Sirt1 on NF-kappaB activity.13 Analogously, 
resveratrol, a Sirt1 activator, doubles interferon-β mRNA 
induction in Huh7 cells infected with dengue virus.17

In light of the fact that melatonin enhances Sirt1 
expression via activation of Bmal1, it is pertinent that 
knockout of Bmal1 in mice impairs their ability to control 
pulmonary infections with the Sendai and influenza RNA 
viruses.18

SIRT1 MAY ALSO AMPLIFY RESPONSE TO INTERFERONS BY 
PREVENTING NUCLEAR EXPORT OF HIGH MOBILITY GROUP BOX 
1 (HMGB1)
Sirt1 activity may also boost the antiviral response trig-
gered by type 1 interferons. In response to inflammatory 
signals or certain viral infections, the damage-associated 
molecular pattern protein HMGB1 is hyperacetylated, 
causing its export from the nucleus and enabling its 
release from the cell.19 The p300/CBP-associated factor 
acetylase complex can mediate this acetylation, as has 
been demonstrated in dengue virus-infected cells.20 
By reversing such acetylation, Sirt1 tends to keep this 
protein confined to the nucleus, where it has been shown 
to boost the transcription of type 1 interferon-stimulated 
antiviral genes.17 21 22 In this regard, HMGB1 has been 
shown to associate with the promoter region of the 
interferon-stimulated gene MxA.17 Indeed, the acetyla-
tion of HMGB1, triggered by viral infection, may repre-
sent a viral stratagem for suppressing expression of these 
antiviral genes. Hence, measures which enhance Sirt1 
activity may both potentiate RNA virus-mediated induc-
tion of interferon-β and also render cells more sensitive 
to the antiviral activity of this cytokine. Figure 1 summa-
rises these pathways.

Release of HMGB1 from virally infected cells stimulates 
the inflammatory activation of nearby myeloid cells, as 
it can act as an agonist for toll-like receptor 2 (TLR2), 
toll-like receptor 4 (TLR4) and receptor for advanced 

glycation end products (RAGE) receptors.23 It has been 
credibly argued that HMGB1 release may play a key role 
in triggering or exacerbating pulmonary inflammation 
in COVID-19 infection.24–26 Sirt1-mediated nuclear reten-
tion of HMGB1 may represent one important mechanism 
whereby melatonin administration aids resolution of 
COVID-19 infection. Additionally, as noted, Sirt1 opposes 
synthesis of proinflammatory cytokines by its inhibitory 
impact on NF-kappaB activity—which is downstream 
from the receptors activated by HMGB1.

Clinically, Sirt1 activity can also be boosted by agents 
such as metformin that activate AMP-activated kinase; 
this reflects the ability of adenosine AMP-activated 
protein kinase (AMPK) to induce nicotinamide ribosyl-
transferase, the rate-limiting enzyme for biosynthesis of 
Sirt1’s obligate substrate NAD+.27 28 However, AMPK also 
suppresses mechanistic target of rapamycin complex 1 
(mTORC1) activity, which is required for type 1 inter-
feron synthesis, and this effect appears to predominate.29 
With respect to the phytochemical resveratrol, which is 
reported to activate Sirt1 in rodent studies, its pharma-
cokinetics when administered orally in humans are too 
poor for it to be clinically useful in this regard.30 31 None-
theless, it is intriguing that this Sirt1 activator has shown 
antiviral effects against a range of viruses in rodent and 
cell culture studies.32

These considerations suggest that melatonin supple-
mentation may help to prevent and control RNA virus 
infections via upregulation of virally mediated type 1 
interferon induction; melatonin may also enhance the 
antiviral activity of these interferons by maintaining the 
nuclear localisation of HMGB1. These hypotheses should 
be readily testable in animal models of viral infection, 
and, if confirmed, could point toward another valuable 
clinical application for this safe and affordable neurohor-
mone nutraceutical.

TOWARD NUTRACEUTICAL PREVENTION OF VIRAL INFECTIONS
More generally, it might be feasible to define a simple 
nutraceutical regimen that could reduce the risk for 
COVID-19 and a range of other viral infections. There is 
growing evidence, both case–control and ecologic, that 
replete vitamin D status not only markedly improves the 
clinical course of COVID-19, but also is associated with 
decreased risk for clinically detectible infection.33 34 Argu-
ably, this might reflect upregulated lung production of 
defensins such as cathelicidin, the production of which 
is driven by calcitriol, which can be synthesised in lung 
cells that express 25-hydroxyvitamin D 1-α hydroxylase 
in response to inflammation.35 36 Cathelicidin is not only 
bactericidal, but also disrupts enveloped viruses such as 
SARS-CoV-2 and influenzas.37–39 Epidemiologic studies 
have correlated higher vitamin D status with lower risk 
for influenza and upper respiratory infections.40 41 
COVID-19 epidemiology also suggests that higher zinc 
status is associated with both a better clinical course in 
this disorder and lower risk for infection.42 43 Especially 
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in the elderly, who are more prone to poor zinc status, 
zinc supplementation has been found to boost acquired, 
antigen-specific immunity, while also exerting an anti-
inflammatory action; such supplementation of the elderly 
was associated with a marked decrease in total infections 
in a 12-month randomised controlled trial.44 45 More 
speculatively, supplementation with glucosamine or with 
high-absorption sources of quercetin may have potential 
for boosting the type-1 interferon response and reducing 
viral infection risk.46–49 Hence, it is not unreasonable to 
suggest that a supplementation programme incorpo-
rating vitamin D, zinc, melatonin and possibly additional 
nutraceuticals could reduce risk for and aid control of 
COVID-19 and a range of other viral infections.

In regard to melatonin dosing, it should be acknowl-
edged that, when used in the context of virally induced 
cytokine storm, multiple daily doses may be appropriate 
to optimise its anti-inflammatory efficacy. Indeed, a 
recent case series of 10 patients with COVID-19 pneu-
monia noted that melatonin supplementation (36–72 mg 
per day given in four divided doses) was associated with a 
reduction in hospital stay, mortality and mechanical venti-
lation.50 The large retrospective study of melatonin use in 
intubated patients with COVID-19 cited above does not 

clarify the dosing schedules employed.1 Whereas, when 
used in a preventive mode, bedtime dosing is appropriate 
so as not to disrupt circadian rhythm.
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Figure 1  How melatonin up-regulates induction of type 1 interferons and interferon-stimulated genes (ISG) by inhibiting 
OTUD3 and promoting nuclear retention of HMGB1, while combating inflammation via inhibition of NF-kB activity, up-regulation 
Nrf2, and prevention of extracellular release of HMGB1.
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