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ABSTRACT
Aims: Stent underexpansion and malapposition are
associated with adverse outcomes following
percutaneous coronary intervention, but detection and
treatment can be challenging in the presence of
extensive coronary artery calcification. Frequency
domain optical coherence tomography (FD-OCT) is a
novel intravascular imaging technique with greater
spatial resolution than intravascular ultrasound (IVUS)
but its role in the presence of extensive coronary
calcification remains unclear. We sought to determine
the utility of FD-OCT compared to IVUS imaging to
guide percutaneous coronary intervention in patients
with severe calcific coronary artery disease.
Methods: 18 matched IVUS and FD-OCT examinations
were evaluated following coronary stent implantation in
12 patients (10 male; mean age 70±7 years)
undergoing rotational atherectomy for symptomatic
calcific coronary artery disease.
Results: In-stent luminal areas were smaller (minimum
in-stent area 6.77±2.18 vs 7.19±2.62 mm2, p<0.05),
while reference lumen dimensions were similar with FD-
OCT compared with IVUS. Stent malapposition was
detected in all patients by FD-OCT and in 10 patients by
IVUS. The extent of stent malapposition detected was
greater (20% vs 6%, p<0.001) with FD-OCT compared
to IVUS. Postdilation increased the in-stent luminal area
(minimum in-stent area: 8.15±1.90 vs 7.30±1.62 mm2,
p<0.05) and reduced the extent of stent malapposition
(19% vs 34%, p<0.005) when assessed by FD-OCT, but
not IVUS.
Conclusions: Acute stent malapposition occurs
frequently in patients with calcific coronary disease
undergoing rotational atherectomy and stent
implantation. In the presence of extensive coronary
artery calcification, FD-OCT affords enhanced stent
visualisation and detection of malapposition, facilitating
improved postdilation stent apposition and minimal
luminal areas.
Trial Registration number NCT02065102.

Ensuring adequate coronary stent expansion
and apposition at implantation are key
factors in the prevention of in-stent

restenosis and stent thrombosis.1–4 This can
be challenging in patients with extensive cor-
onary artery calcification where vascular

KEY QUESTIONS

What is already known about this subject?
▸ Stent malapposition and underexpansion are

major risk factors for stent thrombosis and
restenosis.

▸ Intravascular imaging using ultrasound is useful
to help identify stent malapposition and underex-
pansion and facilitates optimal stent placement.

▸ The presence of extensive calcification limits the
value of intravascular ultrasound reflecting the
ultrasound waves and causing artefacts.

▸ Optical coherence tomography is a novel intra-
vascular imaging modality with 10-fold greater
axial resolution than intravascular ultrasound.

▸ It is not yet clear whether optical coherence tom-
ography is superior to intravascular ultrasound in
the presence of extensive vascular calcification.

What does this study add?
▸ Coronary stent malapposition and underexpan-

sion are common in patients with extensive vas-
cular calcification undergoing percutaneous
coronary intervention.

▸ Optical coherence tomography is superior to
intravascular ultrasound in the detection of stent
underexpansion and malapposition in patients
with extensive coronary artery calcification.

▸ Stent postdilation reduced the extent of stent
malapposition as assessed by optical coherence
tomography.

How might this impact on clinical practice?
▸ Choosing the most appropriate intravascular

imaging modality in patients with extensive cor-
onary artery calcification should facilitate the
detection of stent underexpansion and malappo-
sition, permit optimal stent implantation and,
ultimately reduce the risk of stent thrombosis
and restenosis.
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calcification may limit equipment delivery, lesion prepar-
ation and ultimately, stent expansion and apposition to
the vessel wall. The presence of extensive vascular calcifi-
cation also limits angiographic visualisation impairing
lesion assessment and detection of stent underexpansion
and malapposition.
Intravascular ultrasound (IVUS) imaging is often used

in conjunction with fluoroscopy to assess coronary stent
implantation and guide percutaneous coronary interven-
tion.5 However, ultrasound itself penetrates calcium poorly
and this, combined with the potential for artefact, such as
reverberation or reflection,6 limits the value of IVUS in
the assessment of heavily calcified coronary arteries.
Fourier domain optical coherence tomography

(FD-OCT) is a novel near-infrared intravascular imaging
modality with ∼10-fold greater axial resolution (∼15 μm)
than IVUS.7 8 Assessment of coronary artery dimensions
by FD-OCT is accurate9 and reproducible.10 Postmortem
data11 12 and case reports suggest that FD-OCT may
afford enhanced visualisation in heavily calcified vessels
when compared to IVUS,13 14 but this hypothesis
remains to be tested systematically in a clinical study.
The aim of this study was to compare FD-OCT with
IVUS imaging in patients with extensive coronary artery
calcification undergoing rotational atherectomy and cor-
onary stent implantation.

METHODS
Twelve patients undergoing percutaneous coronary inter-
vention with adjunctive rotational atherectomy for undi-
latable calcific coronary artery disease at the Edinburgh
Heart Centre were enrolled. Rotational atherectomy was
performed using the Rotablator (Boston Scientific,
Fremont, California, USA) and conventional techni-
ques.15 Operators were encouraged to use a maximum
burr/vessel ratio of 0.5 and rotational burr speed ranged
between 160 000 and 190 000 rotations per minute.
Intracoronary verapamil was administered during rotabla-
tion and temporary pacing wires were only inserted when
clinically indicated. Operators were encouraged but not
mandated to postdilate with a non-compliant balloon
matched at least 1:1 with the proximal reference vessel.
Patients were only included in the postdilation analysis if
IVUS and FD-OCT data were available.
All patients were loaded and established on mainten-

ance dose aspirin (75 mg) and clopidogrel (75 mg)
prior to the procedure. Unfractionated heparin was
administered as an initial bolus of 70 IU/kg with add-
itional heparin being administered as guided by the acti-
vated clotting time (target 250–300 s). This study was
performed with the approval of the West of Scotland
Research Ethics Committee and written informed
consent was obtained from all patients.

Imaging acquisition and analysis
In all patients, paired FD-OCT and IVUS automated pull-
back assessments were performed immediately following

coronary stent implantation. In six patients, further
paired FD-OCTand IVUS pullbacks were obtained imme-
diately following high-pressure postdilation of the stent.
Intracoronary nitroglycerin (200 μg) was administered
immediately prior to each imaging pullback. Imaging
data were stored digitally and analysed offline.

Intravascular ultrasound
IVUS imaging was performed using a 40 MHz Atlantis
SR Pro catheter (Boston Scientific, Fremont, California,
USA) and an automated pullback at 0.5 mm/s to
include the stented segment and at least 5 mm reference
at either end.

Optical coherence tomography
Fourier domain OCT was performed using a FastView
OFDI imaging catheter (Terumo, Tokyo, Japan) with an
automated pullback at 20 mm/s. Intracoronary injection
of undiluted X-ray contrast medium (omnipaque 300) at
4–5 mL/s was used to achieve a blood-free field of view.

Image analysis
Cross-sectional images were evaluated by two experi-
enced operators using validated software (Analyze 11.0,
Mayo Clinic, Minnesota, USA). Luminal areas and dia-
meters were assessed at 0.15 mm intervals. Matched
stented segments were defined for IVUS and FD-OCT
images using proximal and distal stent edges and side
branches as reference landmarks.
Malapposition detected by IVUS was defined as clear

separation with visible blood speckle between at least one
stent strut and the vessel wall.16 Malapposition detected
by FD-OCT was defined as a distance between stent strut
and vessel wall (chord length) of >1.5 times the manufac-
turers stated stent strut thickness. For IVUS and FD-OCT,
360° chords were generated based on the identified
lumen and stent contours to identify the per cent of stent
perimeter identified as malapposed and the maximum
malapposition area. Given the thickness of each cross-
sectional slice and the total number of analysed slices
containing circumferential stent, we calculated the
amount of malapposed stent expressed as a percentage
of the total stent surface area for each patient.

Statistical analysis
Statistical analysis was performed using Graph Pad Prism
6. Data are expressed as mean±SD, median (range) or n
(%) as appropriate. Between and within comparisons
for matched IVUS and FD-OCT data were made using
paired t test and further examined by correlation ana-
lysis and Bland-Altman plots. Two-sided p<0.05 was taken
as statistical significance.

RESULTS
Eighteen paired IVUS and FD-OCT pullbacks were per-
formed in 12 patients. In six patients, paired IVUS and
FD-OCT pullbacks performed immediately following
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stent implantation and following stent postdilation were
available. Patients were predominantly male with a mean
age of 70 years (table 1) and principally received a
single long drug-eluting stent following rotablation
(table 2).
Reference lumen areas were similar but in-stent

luminal areas as determined by FD-OCT were smaller
(minimum in-stent luminal area: 6.77±2.18 vs 7.19
±2.62 mm2, p<0.05) when compared to IVUS (tables 2
and 3). There was a good correlation between FD-OCT
and IVUS measurements (minimum luminal diameter,
r=0.95, p<0.0001; and minimum luminal area, r=0.96,
p<0.0001, respectively). The mean differences between
FD-OCT and IVUS were 0.02±0.17 mm for minimum
luminal diameter and 0.42±0.77 mm2 for minimum
luminal area, respectively, (figure 1).
Stent malapposition was detectable in all 12 patients

(100%) using FD-OCT, but in only 10 patients (83%)
using IVUS. The extent of stent malapposition detected
with FD-OCT was greater than that detected by IVUS
(20% vs 6%, p<0.001, expressed as per cent of total stent
surface area; table 3). The maximum distance and
maximum area of malapposition detected using FD-OCT
were greater than those obtained with IVUS (1.1
±0.34 mm vs 0.57±0.32 mm, p<0.001 and 2.65±1.88 mm2

vs 0.88±1.09 mm2, p<0.001, respectively; table 3).
An increase in-stent luminal areas (minimum in-stent

luminal area: 8.15±1.90 vs 7.30±1.62 mm2, p<0.05) and a
reduction in the extent of stent malapposition (19% vs
34%, p<0.005, expressed as % of total stent surface area)
were observed following postdilation when assessed with
FD-OCT, but not IVUS (table 4).

DISCUSSION
This is the first clinical study to examine systematically
the utility of FD-OCT and IVUS in the setting of exten-
sive coronary artery calcification. Consistent with pub-
lished data in more conventional atherosclerotic
populations,9 10 17 FD-OCT generally described smaller
lumen dimensions and detected acute stent malapposi-
tion more frequently when compared to IVUS. Indeed,
acute stent malapposition was detectable to some extent
in all patients using FD-OCT, with the amount of stent

malapposed ranging from 1% to 53% of the total stent
surface area. Finally, high-pressure postdilation with a
non-compliant balloon was associated with a significant
reduction in acute stent malapposition as detected by
FD-OCT.
Our findings that in-stent diameters and luminal areas

were smaller with FD-OCT compared to IVUS are largely
in keeping with previous clinical studies.9 17–20

Moreover, comparing dimensions obtained using
FD-OCT with those obtained using IVUS, the mean dif-
ferences in lumen area observed in this study are consist-
ent with previous work.9 10 20 The smaller catheter size
and faster pullback speed with FD-OCT have been pro-
posed as a potential explanation for these differences.17

However, a recent study by Kubo et al demonstrated that
vessel measurements obtained using IVUS overestimated
vessel dimensions, while enhanced delineation of the
lumen-vessel interface and visualisation of stent struts
obtained with FD-OCT led to a more accurate assess-
ment of vessel and stent dimensions.9 This is particularly
relevant in heavily calcified vessels where acoustic
shadow and reflection may interfere with IVUS assess-
ment (figure 2).6 Consistent with this hypothesis, previ-
ous work has demonstrated that vessel dimensions
obtained using FD-OCT are highly reproducible10 and
more accurate than IVUS.9 21 Indeed, in phantom
models and in human arteries in vitro, IVUS overesti-
mates vessel luminal area by up to 16% and 14%,
respectively,9 22 in contrast to QCA measurement of cor-
onary arteries, which underestimates vessel dimensions
when compared to FD-OCT.9

In keeping with more accurate delineation of the stent
and vessel interface, we found that FD-OCT detected stent
malapposition more frequently than IVUS (figure 2).
Indeed, following stent deployment but prior to postdila-
tion, stent malapposition was detected in all patients with
FD-OCT but in only 83% patients with IVUS. With
FD-OCT, the extent of stent malapposition detected

Table 1 Patient demographics

N=12

Age, years 70±7

Male, n (%) 10 (83)

Acute presentation, n (%) 4 (33)

Previous MI, n (%) 3 (25)

Hypertension, n (%) 9 (75)

Hyperlipidemia, n (%) 12 (100)

Diabetes mellitus, n (%) 2 (17)

Previous CABG, n (%) 3 (25)

History of cigarette smoking, n (%) 7 (58)

CABG, coronary artery bypass graft; MI, myocardial infarction.

Table 2 Procedural characteristics

N=12

Radial/femoral access, n 10/2

Guide catheter size, F 6 (6–7.5)

Largest rotablation burr used, mm 1.75 (1.25–2.0)

Total burr duration, seconds 55±17

Heparin dose, IU 7042±2050

Procedural success, n 12 (100%)

Number of stents/patient, n 1.1±0.3

Number of drug eluting stents/patient, n 0.9±0.5

Mean stent diameter, mm 3.3±0.5

Total stent length, mm 27±15

Mean stent deployment pressure, atm 13±3

Postdilation balloon diameter (n=10), mm 3.8±0.8

Maximum postdilation balloon pressure

(n=10), atm

16±5

Data are presented as median (range), mean±SD or n (%).
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(expressed as % of the total stent surface area) ranged
from 1% to 53%, compared with 1–21% for IVUS. The
extent of malapposition is in keeping the underlying
nature of calcific coronary artery disease, where even with
the use of ablative procedures such as rotational atherect-
omy and high-pressure postdilation, stent strut malapposi-
tion frequently persists.13 The circumferential extent but

not the depth of calcification in the vessel wall as defined
by IVUS has previously been shown to predict stent
malapposition.23

While the resolution of FD-OCT permits stent strut
level analysis,24 this is not the case for IVUS. Previous
studies have employed a number of techniques to
permit comparison between these two imaging

Table 3 Comparison of IVUS and FD-OCT assessments following rotational atherectomy (n=18)

IVUS FD-OCT Difference (IVUS—FD-OCT) p Value

Mean reference lumen diameter, mm 3.64±0.80 3.38±0.66 0.26±0.34 0.330

Mean reference lumen area, mm2 10.77±1.14 9.49±3.59 1.28±1.69 0.388

In-stent diameter, mm

Minimum 2.51±0.53 2.48±0.48 0.02±0.17 0.586

Maximum 4.38±0.82 3.81±0.67 0.57±0.28 <0.001

Mean 3.38±0.62 3.25±0.60 0.13±0.17 <0.005

In-stent area, mm2

Minimum 7.19±2.62 6.77±2.18 0.42±0.77 <0.05

Maximum 12.81±4.61 10.48±3.65 2.33±2.25 <0.001

Mean 9.54±3.48 8.78±2.91 0.82±1.15 <0.01

Percentage of stent malapposed, % 5.5±5.0 19.6±15.1 −14.1±12.4 <0.001

Max stent malapposition, distance in mm 0.57±0.32 1.10±0.34 −0.53±0.33 <0.001

Max stent malapposition, area in mm2 0.88±1.09 2.65±1.88 −1.77±1.35 <0.001

FD-OCT, frequency domain optical coherence tomography; IVUS, intravascular ultrasound.

Figure 1 Bland Altman analyses

comparing minimum luminal area

(MLA; upper panel) and diameter

(MLD; lower panel) obtained

using FD-OCT and IVUS.

FD-OCT, frequency domain

optical coherence tomography;

IVUS, intravascular ultrasound.
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techniques: for example, expressing malapposition as
mean malapposed area per cross-sectional slice17 or in
binary form as the presence or absence of any stent
malapposition.9 More refined methods include an
attempt to quantify the extent of malapposition, either
as the maximum number of consecutive frames with
malapposed struts25 or as the percentage malapposed
struts expressed as per cent of total number of struts.26

To address this issue and allow a clinically meaningful
comparison between the techniques, we calculated the
surface area of the stent that was malapposed and
expressed this as a percentage of the total stent surface
area. We believe this affords a robust and clinically
meaningful method by which to compare stent malappo-
sition as detected using these two techniques.
In this study, postdilation of the implanted stent with a

non-compliant balloon inflated to high pressure was
associated with a significant increase in the minimal
in-stent luminal diameter and area, and a halving in the
extent of malapposition observed using FD-OCT. While
high-pressure postdilation of coronary stents has yielded
mixed outcomes in clinical studies,27–29 our data provide
some evidence to support this strategy as routine in

patients with extensive coronary calcification where stent
malapposition is a frequent finding. Although, mean
stent and lumen dimensions obtained using IVUS were
numerically greater following postdilation, this did not
achieve statistical significance. As discussed above, we
believe that this reflects the difficulties in delineating
the stent-lumen interface in the presence of extensive
vascular calcification.

Clinical relevance
Our findings suggest that in patients with extensive cor-
onary artery calcification, FD-OCT is superior to IVUS at
detecting acute stent underexpansion and malapposi-
tion. This, in combination with a more rapid pullback
speed (up to 40 mm/s) of FD-OCT resulting in less
ischaemic burden,9 and previous data suggesting more
accurate assessment of lesion dimensions with FD-OCT,
support a clinical utility for FD-OCT in the evaluation of
percutaneous coronary intervention in patients with
extensive coronary artery calcification. Most of the con-
temporary data supporting a role for intravascular
imaging in this area relate to IVUS30–32 reflecting the
temporal evolution of these two technologies. However,

Table 4 Effect of postdilation on stent dimensions assessed by FD-OCT and IVUS (N=6)

IVUS FD-OCT

Pre Post p Value Pre Post p Value

In-stent diameter, mm

Minimum 2.55±0.42 2.70±0.50 0.057 2.60±0.41 2.82±0.34 0.036

Maximum 4.43±0.63 4.77±0.85 0.152 3.84±0.48 4.25±0.65 0.031

In-stent area, mm2

Minimum 7.73±2.20 7.95±2.72 0.551 7.30±1.62 8.15±1.90 0.023

Maximum 13.02±3.41 14.77±5.45 0.184 10.72±2.55 13.00±3.62 0.040

Percentage of stent malapposed (%) 7±7 7±4 0.984 34±12 19±10 0.004

FD-OCT, frequency domain optical coherence tomography; IVUS, intravascular ultrasound.

Figure 2 (A) Matched IVUS and (B) FD-OCT cross-sectional images following coronary stent implantation in a patient treated

with rotational atherectomy. An arc of calcification is visible in the vessel wall from the 12 o’clock position around to the 6 o’clock

position. Malapposed stent struts are clearly visible in this area with FD-OCT (panel B, arrows) but the interface between stent

strut and vessel wall is poorly delineated in the corresponding IVUS image (panel A). An area of thrombus adherent to the

luminal surface of the stent is also visible (T). FD-OCT, frequency domain optical coherence tomography; IVUS, intravascular

ultrasound.
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in a recent non-randomised case–control study, Prati
et al demonstrated a lower incidence of cardiac death
and myocardial infarction (6.6% vs 13%, p=0.006) in
patients undergoing percutaneous coronary intervention
guided by fluoroscopy and FD-OCT compared to fluoro-
scopic guidance alone.33 Large-scale randomised clinical
trials are required before we can be sure our findings
with FD-OCT will translate into improved clinical out-
comes for patients.

Limitations
By definition, patients included in this study had undila-
table calcific coronary artery lesions preventing delivery
of the imaging catheter to the area of interest prior to
atherectomy and treatment. This, combined with the
need for a rapid intracoronary injection of contrast
during FD-OCT imaging and the associated potential
for propagation of any atherectomy-induced dissection,
meant that intravascular imaging was performed only
following rotational atherectomy and stent implantation.
In the current study, reference vessel dimensions were

numerically smaller with FD-OCT compared to IVUS but
this did not achieve statistical significance, perhaps
reflecting the sample size. We elected to pool images
obtained following stent implantation with those
obtained following postdilation to maximise study power.
While we accept this may be a potential source of bias,
we believe that the postdilation intervention was suffi-
cient to justify treating each run as a separate data set.
In summary, we have performed a systematic evalu-

ation of the clinical utility of FD-OCT and IVUS in the
presence of extensive coronary artery calcification. Our
findings suggest that acute stent malapposition occurs
frequently in this setting and that FD-OCT affords
enhanced stent visualisation and detection of stent
malapposition, facilitating stent postdilation and leading
to improved stent apposition and minimal luminal areas.
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