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Baseline clinical and ECG characteristics
Table  1 shows the study population’s baseline char-
acteristics and AI-ECG prediction probabilities. The 
NT-proBNP level was higher in patients with dyspnoea of 
cardiac origin (3524.0 (1068.0–8191.0) pg/mL vs 445.0 
(131.0–1767.0) pg/mL, p<0.001). For patients with dysp-
noea of cardiac origin, 76.3% were predicted as cardiac 
causes (p<0.001) by AI-ECG, whereas 88.1% were 

predicted as pulmonary (p<0.001) causes for patients 
with dyspnoea of origin. The median (IQR) AI-ECG 
prediction probability value for cardiac causes in patients 
with dyspnoea of cardiac origin was 0.90 (0.54–0.99). 
The patients were matched using 1:1 exact matching on 
the propensity score for age and sex, which resulted in 
adequate balance. After matching, all the standardised 
mean differences for the covariates were below 0.1, and 

Figure 2  Development, validation and schematic strategy for dataset creation and analysis. Performance of deep-learning-
based model for cardiac origin. EF, ejection fraction; GBM, gradient boosting machine; HF, heart failure; HFrEF, heart failure-
reduced ejection fraction.
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all standardised mean differences for squares and two-
way interactions between covariates were below 0.15. 
After the propensity score matching analysis, the AI-ECG 

prediction probability value showed significant differ-
ences between the two groups (online supplemental 
table S1). Additionally, subgroup analyses stratified by an 

Table 1  Baseline characteristics of the study population

Cardiac origin
(n=1197)

Pulmonary origin
(n=1908)

Total
(n=3105) P value

Clinical characteristics

 � Age, years 73±14 65±17 68±16 <0.001

 � Female sex, n (%) 537 (44.9) 763 (40.0) 1300 (41.9) 0.008

 � BMI (kg/m2) 24.2±4.7 22.9±4.1 23.4±4.4 <0.001

 � History of HF, n (%) 291 (24.3) 85 (4.5) 376 (12.1) <0.001

 � DM, n (%) 338 (28.3) 258 (13.5) 596 (19.2) <0.001

 � HTN, n (%) 435 (36.4) 327 (17.1) 762 (24.5) <0.001

 � CKD, n (%) 257 (21.5) 54 (2.8) 311 (10.0) <0.001

 � CAD, n (%) 235 (19.6) 117 (6.1) 352 (11.3) <0.001

 � MI, n (%) 75 (6.3) 42 (2.2) 117 (3.8) <0.001

 � COPD, n (%) 57 (4.8) 196 (10.3) 253 (8.1) <0.001

 � AF, n (%) 458 (38.3) 92 (4.8) 550 (17.7) <0.001

Laboratory findings

 � LVEF (%) 45.5±14.7 56.7±12.2 48.8±14.9 <0.001

 � E/e’ 17.3±7.5 15.6±6.7 16.9±7.4 0.001

Laboratory findings

 � BUN (mg/dL) 24.6±15.8 19.6±14.7 21.6±15.3 <0.001

 � Creatinine (mg/dL) 1.4±1.4 1.2±1.2 1.3±1.2 <0.001

 � eGFR (mL/min/1.73 m2) 63.2±30.4 75.4±32.9 70.7±32.5 <0.001

 � NT-proBNP (pg/mL) 3524.0 (1068.0–8191.0) 445.0 (131.0–1767.0) 1241.0 (247.0–4715.0) <0.001

 � Log-NT-proBNP (pg/mL) 3.5 (3.0–3.9) 2.6 (2.1–3.2) 3.0 (2.3–3.7) <0.001

 � WBC (x109/L) 8.6±3.7 10.9±5.8 9.9±5.2 <0.001

 � Neutrophil (%) 67.1±13.2 76.3±12.7 72.8±13.6 <0.001

 � ESR (mm/hour) 23.0±24.0 52.4±34.1 41.0±33.8 <0.001

 � CRP (mg/dL) 1.8±3.0 10.8±9.8 7.5±9.1 <0.001

ECG findings

 � Heart rate (beats/min) 89.8±24.6 92.3±20.5 91.7±21.5 0.017

 � PR interval (ms) 167.8±34.5 155.6±26.1 157.8±28.1 <0.001

 � QRS duration (ms) 99.6±22.9 90.7±15.6 92.8±18.0 <0.001

 � QT interval (ms) 397.5±63.1 365.9±45.4 373.3±51.8 <0.001

 � Corrected QT interval (ms) 472.5±43.7 445.7±38.9 452.0±41.6 <0.001

 � P axis 48.2±29.3 51.6±24.2 51.0±25.2 0.021

 � R axis 30.0±56.9 40.6±44.5 38.1±47.9 <0.001

 � T axis 79.1±81.5 47.1±42.0 54.5±55.5 <0.001

AI-ECG prediction probability

 � Probability for pulmonary origin 0.10 (0.01–0.46) 0.91 (0.78–0.96) 0.79 (0.17–0.94) <0.001

 � Pulmonary causes, n (%) 284 (23.7) 1681 (88.1) 1965 (63.3) <0.001

 � Probability for cardiac origin 0.90 (0.54–0.99) 0.09 (0.04–0.22) 0.21 (0.06–0.83) <0.001

 � Cardiac causes, n (%) 913 (76.3) 227 (11.9) 1140 (36.7) <0.001

Variables are expressed as the mean±SD, median (IQR), or n (%).
AF, atrial fibrillation; AI, artificial intelligence; BMI, body mass index; BUN, blood urea nitrogen; CAD, coronary artery disease; CKD, chronic kidney 
disease; COPD, chronic obstructive pulmonary disease; CRP, C reactive protein; DM, diabetes mellitus; e’, septal mitral annular velocity; E, early 
mitral inflow; eGFR, estimated glomerular filtration rate; ESR, erythrocyte sedimentation rate; HF, heart failure; HTN, hypertension; LVEF, left 
ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal probrain natriuretic peptide; WBC, white blood cell.
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age cut-off of 65 years confirmed these findings (online 
supplemental table S2).

Performance of DLM for identifying the origin of dyspnoea
Online supplemental figure S1 depicts the AUC of the 
AI-ECG model after pretraining, predicting patients with 
LVEF ≤40%, with an AUC value of 0.855 (95% CI 0.801 
to 0.901). After pretraining an AI-ECG with LVEF, it was 
post-trained to identify cardiac causes among patients 
with dyspnoea visiting the ED. An AI-ECG model achieved 
an AUC of 0.938 (95% CI 0.897 to 0.965) with an accu-
racy of 88.1% (95% CI 84.0% to 92.1%) in identifying 
dyspnoea of cardiac origin among patients visiting the 
ED. The sensitivity, specificity and positive and negative 
predictive values were 93.0%, 79.5%, 89.0% and 86.4%, 
respectively. The F1 score was 0.828 (95% CI 0.757 to 
0.891). When compared with the predictive value of 
NT-proBNP for dyspnoea of cardiac origin (cut-off value 
>1383), AI-ECG performance showed superior diagnostic 
value in this study population for identifying dyspnoea 
of cardiac origin (AUC 0.938, 95% CI 0.897 to 0.965 for 
AI-ECG; AUC 0.765, 95% CI 0.701 to 0.823, p<0.001 for 
NT-proBNP, figure 3). Figure 4 presents the ECG heatmap 
of attention scores for patients with cardiogenic origins.

Association between parameters to identify the cardiac origin 
of dyspnoea
Table  2 demonstrates the univariate logistic regres-
sion analysis. The pretraining AI-ECG probability was 
significantly associated with the cardiac origin of dysp-
noea. After adjusting for clinical, laboratory and echo-
cardiographic parameters, AI-ECG probability was 

independently associated with dyspnoea of cardiac origin 
(adjusted OR, 3.45 (95% CI 2.26 to 5.30), p<0.001). In 
contrast, the NT-proBNP level was not significantly asso-
ciated with dyspnoea of cardiac origin. We conducted 
an additional analysis to assess the incremental prog-
nostic value of the AI-ECG performance. Two models 
were compared: a baseline model including the clinical, 
laboratory and echocardiographic parameters as demon-
strated in table 2, and an extended model that included 
the baseline model parameters plus the AI-ECG proba-
bility. Compared with the baseline model, the extended 
model including AI-ECG performance showed superior 
diagnostic value even after adjusting for the clinical, 
laboratory and echocardiographic parameters (AUC 
0.958, 95% CI 0.951 to 0.964, p<0.001 for the extended 
model; AUC 0.917, 95% CI 0.907 to 0.927, p<0.001 for 
NT-proBNP, online supplemental figure S2). The NRI 
and IDI were 0.136 and 0.035, respectively. In the DeLong 
test, the Z-Score was 4.369, and the p value was <0.001.

Sensitivity analysis for AI-ECG prediction probability showing 
cardiac causes in pulmonary origin group
We identified patients predicted to have cardiac causes 
from the pulmonary origin group using AI-ECG analysis 
and performed an additional sensitivity analysis to deter-
mine whether these patients had true cardiac causes.

Among the 1908 patients in this group, 129 (6.76%) 
were identified as having a high probability of dyspnoea 
of cardiac origin with an AI-ECG predicted probability 
≥0.70. These patients were classified into three categories 
based on the likelihood of cardiac origins: ≥0.90 (n=65), 
0.80–0.89 (n=34) and 0.70–0.79 (n=34). In the pulmo-
nary group, the number of patients with dyspnoea of true 
cardiac origin (as predicted by AI-ECG) with a probability 
of ≥0.70 was 53 (81.5%), 23 (76.7%) and 20 (58.8%) for 
those with likelihoods of ≥0.90, 0.80–0.89 and 0.70–0.79, 
respectively (p=0.046, figure  5). Online supplemental 
table S3 shows the baseline characteristics of the study 
population. The NT-proBNP levels of patients with true 
pulmonary causes within the pulmonary group did not 
differ from those of patients with dyspnoea of true cardiac 
origin in the pulmonary group.

Additionally, we analysed patients with dyspnoea of 
true pulmonary origin where AI-ECG was misinterpreted 

Figure 3  AUROC curve for identifying cardiac causes. 
The red line indicates the AI-ECG model, and the blue line 
indicates the NT-proBNP level. AI, artificial intelligence; 
AUROC, area under the receiver operating characteristic 
curve; NT-proBNP, N-terminal probrain natriuretic peptide.

Figure 4  The ECG heatmap displays attention scores 
for patients with cardiac origin, highlighting bright yellow 
segments on the waveform that indicate regions that have 
substantially contributed to the classification of cardiac 
origin.
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as having a cardiac origin. Among the 34 cases involving 
33 patients, 22 had abnormal ECG findings, including 
bundle branch block, whereas 7 exhibited abnormal lung 
conditions, including cancer (n=3) and tuberculosis-
destroyed lung, empyema thorax and emphysema lung 
(n=1 each). One patient exhibited abnormal ECG find-
ings and lung cancer. Four patients exhibited no defini-
tive abnormalities (online supplemental table S4).

DISCUSSION
Main findings
Our study aimed to assess the efficacy of AI-ECG in 
distinguishing between cardiac and pulmonary causes 
of dyspnoea, a critical challenge in the ED. Our findings 
highlighted several key issues notably the participant 
characteristics, the validity of AI-ECG compared with 
NT-proBNP levels and the identification of dyspnoea 
origins in patients misclassified by their initial presenta-
tion.

AI-ECG demonstrated a significant predictive 
value over traditional diagnostic methods (especially 
NT-proBNP) in identifying dyspnoea of cardiac origin. 
Furthermore, 74.4% of patients identified by AI-ECG 
as having a predicted cardiac origin were confirmed to 
have cardiac issues, demonstrating the high accuracy of 
AI-ECG predictions among patients initially classified as 
having a pulmonary origin in the ED.

Difficulties in diagnosing HF in real-world clinical settings
Dyspnoea stemming from diverse cardiac and pulmonary 
conditions often presents overlapping clinical features, 
posing challenges in initial assessments and increasing 
the risk of misdiagnosis. Approximately 10%–15% of ED 
dyspnoea cases involve concurrent cardiac and pulmo-
nary issues, necessitating complex clinical interventions. 
Our study (including diverse patient demographics and 
comorbidities) revealed distinctions between cardiac-
origin and pulmonary-origin dyspnoea. Notably, patients 
with cardiac-origin dyspnoea were older and had 
multiple comorbidities. These characteristics emphasise 
the complexity of diagnosing dyspnoea and highlight the 

Table 2  Factors associated with identifying the cardiac origin of dyspnoea

Parameter

Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Age (per year) 1.03 1.03 to 1.04 0.007 0.98 0.96 to 1.00 0.042

Female sex 1.22 1.05 to 1.41 <0.001 2.33 1.48 to 3.73 <0.001

HF history 6.92 5.39 to 8.97 <0.001 0.83 0.46 to 1.44 0.499

DM 2.52 2.10 to 3.02 <0.001 0.87 0.53 to 1.42 0.562

HTN 2.78 2.35 to 3.29 <0.001 0.85 0.54 to 1.36 0.503

CKD 9.39 6.99 to 12.84 <0.001 2.41 1.31 to 4.60 0.006

AF 12.23 9.67 to 15.63 <0.001 4.64 2.74 to 8.14 <0.001

Log-NT-proBNP (per pg/mL) 3.87 3.41 to 4.41 <0.001 1.08 0.77 to 1.52 0.639

WBC (per 10³/μL) 0.90 0.88 to 0.91 <0.001 0.95 0.91 to 0.99 0.022

CRP (per mg/dL) 0.73 0.71 to 0.75 <0.001 0.80 0.77 to 0.84 <0.001

LVEF (per %) 0.94 0.93 to 0.95 <0.001 0.96 0.95 to 0.98 <0.001

E/e’ 1.04 1.02 to 1.06 <0.001 0.98 0.95 to 1.01 0.127

AI-ECG 23.81 19.68 to 28.91 <0.001 3.45 2.26 to 5.30 <0.001

AF, atrial fibrillation; AI, artificial intelligence; CKD, chronic kidney disease; CRP, C reactive protein; DM, diabetes mellitus; e’, septal mitral 
annular velocity; E, early mitral inflow; HF, heart failure; HTN, hypertension; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal 
probrain natriuretic peptide; WBC, white blood cell.

Figure 5  Sensitivity analysis according to AI-ECG 
probability for cardiac origin in patients with pulmonary origin 
reviewed by a cardiologist. The blue box represents the true 
cardiac origin, and the red box represents the true pulmonary 
origin, as reviewed by expert cardiologists. AI, artificial 
intelligence.
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need for advanced diagnostic tools to accommodate such 
diversity.

Validity of AI-ECG compared to NT-proBNP
Natriuretic peptides effectively diagnose HF in acute 
care settings.15–18 A previous systematic review found 
that using lower recommended thresholds of 300 ng/L 
for NT-proBNP achieved sensitivities of 0.99 (0.97–1.00) 
and negative predictive values of 0.98 (0.89–1.0) for 
diagnosing acute HF.15 Another study comparing the 
diagnostic value of natriuretic peptide in HF with that of 
ECG showed that NT-proBNP provided a higher negative 
predictive value (0.97) and a lower positive predictive 
value (0.44), whereas an abnormal ECG did not add any 
further predictive value.17 However, their effectiveness 
in distinguishing HF may be limited owing to multiple 
factors affecting natriuretic peptide levels.19 Our study 
demonstrated that the AI-ECG algorithm outperformed 
NT-proBNP in identifying the cardiac origin of dyspnoea 
(AUC, 0.938 vs 0.765). Moreover, even after adjusting for 
the clinical, laboratory and echocardiographic parame-
ters, AI-ECG significantly improved the model’s predic-
tive performance (AUC, 0.958 vs 0.917). This suggests 
that AI-ECG analysis has the potential to serve as a new 
tool that surpasses NT-proBNP, improving the diagnostic 
accuracy of HF.

Advancing ECG diagnostics with AI: unveiling the power of 
deep learning and transformer models
In our sensitivity analysis, clinicians initially classified 
11.9% of patients presenting with dyspnoea in the ED as 
pulmonary in origin. However, 74.4% of these patients 
had a cardiac origin when the AI-ECG prediction proba-
bility was >0.70, indicating high accuracy, particularly with 
higher prediction probability values. AI-ECG offers bene-
fits not found in conventional diagnostic approaches. 
The advantage of the transformer model is its ability to 
effectively handle temporal dependencies across long 
sequences via self-attention mechanisms, allowing for 
the accurate modelling of complex temporal patterns 
without relying on fixed-size windows or recurrent 
connections. Furthermore, its parallelisable architecture 
enables efficient processing of large-scale time-series data, 
contributing to faster training and inference times. Our 
results show that AI-ECG significantly enhances clinical 
decision-making in the time-sensitive ED environment 
by integrating rapidly into workflows, thereby facilitating 
quicker diagnoses and avoiding delays from more inva-
sive procedures. This innovation has the potential to help 
physicians deliver better-informed care efficiently.

ECG pattern recognition via DLM: potential mechanisms 
differentiating HF from pulmonary conditions
Traditional AI models (particularly those with deep-
learning architectures) often serve as ‘black boxes’, 
obscuring the basis of their decisions.20 However, the 
proposed transformer architecture resolves this challenge 
by employing an attention mechanism that distinctly 

accentuates significant segments of the input data with 
attention scores. The attention score heatmap displays 
the specific areas of the ECG that our AI-ECG model 
focused on when predicting patients with cardiogenic 
causes, thereby enhancing the transparency of the model 
and providing insights into its decision-making process.

Our investigation of ECGs via deep learning anal-
ysis revealed distinctive patterns, particularly within 
the intrinsicoid segments of the QRS complex and the 
T wave. These are crucial for differentiating between 
patients with HF and those with pulmonary conditions. 
Despite the challenges posed by the ‘black-box’ nature 
of deep learning algorithms, our results support the 
hypothesis that the electrocardiographic differences 
observed in patients with HF are primarily owing to alter-
ations in ventricular depolarisation and repolarisation 
abnormalities.21–23 These findings suggested that ventric-
ular electrical remodelling plays a substantial role in the 
analytical capabilities of deep learning algorithms, indi-
cating that such ECG modifications are crucial for evalu-
ating patients presenting with dyspnoea in the ED. This 
highlights the potential of deep learning for enhancing 
the diagnostic accuracy of HF in clinical settings, thereby 
providing a novel approach for identifying and managing 
patients with this condition.

Limitations
Our study has some limitations. First, we defined the 
cardiac and pulmonary origins as HF and pneumonia, 
respectively. Therefore, we limited our representation 
of these disease categories, although these conditions 
are highly prevalent and represent significant cases. 
However, we focused on comparing the two conditions 
with the highest incidence and most representative of 
each disease, yielding positive results. This lays the foun-
dation for extending the findings of this study to other 
diseases.

Second, HF and pneumonia can coexist. As previously 
mentioned, the two diseases may coexist in 10%–15% 
of the cases. The presence of overlapping conditions 
requires clinical decision-making based on the clinical 
situation and test results, making subjective judgments 
by clinicians unavoidable. Consequently, the differentia-
tion of AI-ECG in such cases remains a future challenge. 
Third, AI-ECG was misinterpreted as indicating dyspnoea 
of cardiac origin in cases where the true origin was 
pulmonary. This suggests the need for further algorithm 
training to address misinterpretations related to certain 
ECG patterns and conditions affecting cardiac remod-
elling, especially as specific causes were unidentified in 
four cases.

Fourth, our transformer network required more 
computational power than traditional networks such as 
convolutional24 and recurrent neural network,25 owing 
to its many parameters and the quadratic increase in 
computational demands with input sequence length. 
We mitigated this by developing a method to identify 
R-peaks and select only five ECG patterns, reducing the 
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sequence used to approximately 32% via linear interpo-
lation, thereby lowering computational demands without 
significantly affecting prediction accuracy. Despite these 
advances, the single-centre study and the imbalanced 
dataset underscore the need for larger-scale validation 
and comparison with established models.

Fifth, a biased population based on disease severity 
and comorbidities may have been selected because this 
retrospective study was conducted at a tertiary university 
hospital, thereby limiting its representativeness of the 
general population. Therefore, prospective studies are 
warranted to establish the usefulness of AI-ECG in the 
medical field.

CONCLUSION
Our findings suggest that the application of AI-ECG repre-
sents a promising advancement in the ED and provides a 
new and effective means of identifying the cause of dysp-
noea. AI-ECG could become an important tool in the 
evolving medical diagnostic landscape owing to its poten-
tial to increase diagnostic accuracy and shorten treat-
ment times. This could lead to more tailored treatment 
strategies, ultimately improving patient outcomes and 
reducing the burden on the ED. Prospective studies are 
warranted to further evaluate the practicality and effec-
tiveness of real-time improvement in acute care settings.
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Supplementary Materials 

 

Supplementary Table S1. Baseline characteristics of patients with 1:1 matched study population 

  
Cardiac origin 

(n = 1,162) 
Pulmonary origin 

(n = 1,162) 
Total 

(n = 2,324) p-value 

 Clinical characteristics     

   Age, years 72.7 ± 14.0 73.7 ± 12.2 73.2 ± 13.2 0.419 

   Female sex, n (%) 642 (55.2) 687 (59.1) 1329 (57.2) 0.065 

   BMI (kg/m2) 24.2 ± 4.7 24.3 ± 4.4 24.3 ± 4.5 0.650 

   Prior history of HF, n (%) 269 (23.1) 222 (19.1) 491 (21.1) 0.019 

   DM, n (%) 328 (28.2) 382 (32.9) 710 (30.6) 0.017 

   HTN, n (%) 426 (36.7) 401 (34.5) 827 (35.6) 0.298 

   CKD, n (%) 254 (21.9) 44 (3.8) 298 (12.8) < 0.001 

   CAD, n (%) 222 (19.1) 145 (12.5) 367 (15.8) < 0.001 

   MI, n (%) 75 (6.5) 44 (3.8) 119 (5.1) 0.005 

   COPD, n (%) 56 (4.8) 160 (13.8) 216 (9.3) < 0.001 

   AF, n (%) 450 (38.7) 138 (11.9) 588 (25.3) < 0.001 

Laboratory findings     

   LVEF (%) 45.6 ± 14.7 54.5 ± 13.1 48.1 ± 14.8 < 0.001 

E/e’ 17.3 ± 7.5 18.1 ± 7.0 17.5 ± 7.4 0.019 

Laboratory findings     

  BUN (mg/dL) 24.7 ± 15.7 23.5 ± 16.2 24.1 ± 16.0 < 0.001 

  Creatinine (mg/dL)  1.4 ± 1.3  1.3 ± 1.1 1.4 ± 1.2 0.225 

  eGFR (mL/min/1.73 m2) 63.0 ± 30.4 65.2 ± 31.7 64.1 ± 31.1 0.229 

  NT-proBNP (pg/mL) 3566.0 [1086.0–8238.0] 663.0 [206.0–2479.0] 1777.0 [445.0–5492.0] < 0.001 
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  Log-NT-proBNP (pg/mL)  3.6 [3.0–3.9]  2.8 [2.3–3.4]  3.2 [2.6–3.7] < 0.001 

  WBC (10³/μL)  8.6 ± 3.8 11.5 ± 6.2  10.0 ± 5.3 < 0.001 

  Neutrophil (%) 67.2 ± 13.2 77.4 ± 11.9 72.3 ± 13.6 < 0.001 

  ESR (mm/h) 23.1 ± 24.0 53.3 ± 34.4 38.2 ± 33.3 < 0.001 

  CRP (mg/dL)  1.8 ± 3.0 11.2 ± 10.5  6.7 ± 9.2 < 0.001 

ECG findings     

   Heart rate (bpm) 79.5 ± 18.5 81.5 ± 19.7 80.6 ± 19.1 0.042 

   PR interval (ms) 162.6 ± 31.7 162.1 ± 30.2 162.4 ± 30.9 0.755 

   QRS duration (ms) 94.4 ± 18.8 93.9 ± 17.6 94.2 ± 18.2 0.955 

QT interval (ms) 389.9 ± 46.1 388.8 ± 49.9 389.3 ± 48.1 0.482 

Corrected QT interval (ms) 441.0 ± 38.6 444.0 ± 36.0 442.5 ± 37.3 0.023 

P axis 53.7 ± 25.0 52.0 ± 25.6 52.8 ± 25.3 0.830 

R axis 33.6 ± 42.6 36.2 ± 45.2 34.9 ± 44.0 0.450 

T axis 57.4 ± 52.2 53.9 ± 51.4 55.6 ± 51.8 0.549 

 AI-ECG prediction probability     

Probability for pulmonary origin  0.10 [0.01–0.45] 0.88 [0.64–0.95] 0.54 [0.06–0.90] < 0.001 

Pulmonary causes, n (%) 268 (23.1) 929 (79.9) 1197 (51.5) < 0.001 

Probability for cardiac origin  0.90 [0.55–0.99] 0.12 [0.05–0.36] 0.46 [0.10–0.94] < 0.001 

Cardiac causes, n (%) 894 (76.9) 233 (20.1) 1127 (48.5) < 0.001 

Variables are expressed as the mean ± SD, median [IQR], or n (%). AI, artificial intelligence; AF, atrial fibrillation; BMI, body mass index; BUN, blood urea 

nitrogen; CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRP, c-reactive protein; DM, diabetes 

mellitus; E, early mitral inflow; e’, septal mitral annular velocity; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; ESR, erythrocyte 

sedimentation rate; HF, heart failure; HTN, hypertension; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro-brain 

natriuretic peptide; WBC, white blood cell 
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Supplementary Table S2. Baseline characteristics of patients according to the age distribution of 65 years in the 1:1 matched study population 

 Age≥65 years  Age<65 years 

Cardiac 
origin (n = 

853) 

Pulmonary 
origin  

(n = 934) 

Total  

(n = 1,787)  

p-value  Cardiac 
origin (n = 

309) 

Pulmonary 
origin  

(n = 228) 

Total  

(n = 537) 
p-value 

 Clinical 
characteristics 

         

   Age, years 79.6 ± 8.0 78.4 ± 7.3 79.0 ± 7.7 0.001  53.8 ± 8.8 54.6 ± 9.1 54.1 ± 8.9 0.162 

   Female sex, n (%) 404 (47.4) 553 (59.2) 957 (53.6) < 0.001  238 (77.0) 134 (58.8) 372 (69.3) < 0.001 

   BMI (kg/m2) 23.6 ± 4.1 23.9 ± 4.1 23.7 ± 4.1 0.135  26.1 ± 5.6 26.0 ± 5.3 26.0 ± 5.5 0.880 

   Prior history of HF, n 
(%) 

192 (22.5) 208 (22.3) 400 (22.4) 0.949  77 (24.9) 14 (6.1) 91 (16.9) < 0.001 

   DM, n (%) 243 (28.5) 322 (34.5) 565 (31.6) 0.008  85 (27.5) 60 (26.3) 145 (27.0) 0.834 

   HTN, n (%) 349 (40.9) 360 (38.5) 709 (39.7) 0.330  77 (24.9) 41 (18.0) 118 (22.0) 0.070 

   CKD, n (%) 211 (24.7) 37 (4.0) 248 (13.9) < 0.001  43 (13.9) 7 (3.1) 50 (9.3) < 0.001 

   CAD, n (%) 164 (19.2) 139 (14.9) 303 (17.0) 0.017  58 (18.8) 6 (2.6) 64 (11.9) < 0.001 

   MI, n (%) 52 (6.1) 42 (4.5) 94 (5.3) 0.160  23 (7.4) 2 (0.9) 25 (4.7) 0.001 

   COPD, n (%) 51 (6.0) 144 (15.4) 195 (10.9) < 0.001  5 (1.6) 16 (7.0) 21 (3.9) 0.003 

   AF, n (%) 390 (45.7) 122 (13.1) 512 (28.7) < 0.001  60 (19.4) 16 (7.0) 76 (14.2) < 0.001 

Laboratory findings          

LVEF (%) 47.2 ± 14.3 54.5 ± 13.2 49.6 ± 14.3 < 0.001  41.1 ± 15.0 53.8 ± 12.1 42.5 ± 15.3 < 0.001 

E/e’ 18.1 ± 7.6 18.1 ± 7.0 18.1 ± 7.4 0.536  15.0 ± 6.8 17.1 ± 5.5 15.1 ± 6.7 0.086 

Laboratory findings          

  BUN (mg/dL) 26.3 ± 16.4 25.0 ± 16.0 25.6 ± 16.2 0.015  20.3 ± 12.6 17.3 ± 15.6 19.0 ± 14.0 < 0.001 

  Creatinine (mg/dL)  1.4 ± 1.2  1.3 ± 0.9  1.4 ± 1.1 0.859   1.5 ± 1.7  1.2 ± 1.7  1.4 ± 1.7 < 0.001 

  eGFR (mL/min/1.73 
m2) 

59.2 ± 29.0 61.6 ± 30.6 60.4 ± 29.9 0.199  73.4 ± 31.9 80.0 ± 31.7 76.2 ± 32.0 0.024 

  NT-proBNP (pg/mL) 4182.0 832.0 1990.5 < 0.001  1935.5 265.0 1074.0 < 0.001 
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[1552.5–
9029.0] 

[262.0–
2916.0] 

[505.0–
5837.0] 

[486.0–
5658.0] 

[72.0–
1074.0] 

[189.0–
3961.5] 

  Log-NT-proBNP 
(pg/mL) 

 3.6 [3.2–
4.0] 

 2.9 [2.4–
3.5] 

 3.3 [2.7–
3.8] 

< 0.001   3.3 [2.7–
3.8] 

 2.4 [1.9–
3.0] 

 3.0 [2.3–
3.6] 

< 0.001 

  WBC (10³/μL)  8.3 ± 3.6 11.6 ± 6.3 10.0 ± 5.4 < 0.001   9.4 ± 4.1 11.0 ± 5.7 10.0 ± 4.9 0.002 

  Neutrophil (%) 68.1 ± 13.0 77.8 ± 11.6 73.2 ± 13.2 < 0.001  64.7 ± 13.5 76.1 ± 12.8 69.6 ± 14.4 < 0.001 

  ESR (mm/h) 25.8 ± 23.9 53.7 ± 34.7 40.4 ± 33.1 < 0.001  15.5 ± 22.6 51.8 ± 33.2 30.9 ± 32.9 < 0.001 

  CRP (mg/dL)  1.9 ± 3.2 11.1 ± 10.5  6.8 ± 9.2 < 0.001   1.3 ± 2.5 11.6 ± 10.8  6.0 ± 9.1 < 0.001 

ECG findings          

   Heart rate (bpm) 81.7 ± 18.3 81.8 ± 18.5 81.7 ± 18.3 0.009  78.4 ± 18.5 81.5 ± 20.1 80.1 ± 19.5 0.965 

   PR interval (ms) 157.0 ± 
24.1 

158.4 ± 
24.8 

157.6 ± 
24.4 

0.149  165.8 ± 
34.9 

163.5 ± 
31.8 

164.6 ± 
33.3 

0.374 

   QRS duration (ms) 93.4 ± 16.5 94.0 ± 14.1 93.7 ± 15.5 0.552  94.9 ± 19.9 93.9 ± 18.6 94.4 ± 19.2 0.183 

QT interval (ms) 379.1 ± 
39.1 

383.0 ± 
39.2 

380.7 ± 
39.1 

0.070  395.5 ± 
48.5 

390.7 ± 
52.8 

392.9 ± 
50.9 

0.274 

Corrected QT interval 
(ms) 

435.2 ± 
32.0 

439.6 ± 
30.6 

437.1 ± 
31.5 

0.232  443.9 ± 
41.3 

445.4 ± 
37.5 

444.7 ± 
39.3 

0.082 

P axis 53.2 ± 19.8 53.5 ± 25.7 53.4 ± 22.5 0.710  53.9 ± 27.4 51.5 ± 25.6 52.6 ± 26.5 0.925 

R axis 44.3 ± 40.6 43.5 ± 41.1 44.0 ± 40.8 0.076  28.1 ± 42.6 33.8 ± 46.3 31.2 ± 44.7 0.957 

T axis 49.4 ± 38.6 50.0 ± 38.5 49.7 ± 38.6 0.150  61.5 ± 57.5 55.2 ± 54.9 58.1 ± 56.2 0.593 

AI-ECG prediction 
probability 

         

Probability for 
pulmonary origin 

0.10 [0.01–
0.43] 

0.87 [0.58–
0.95] 

0.53 [0.07–
0.90] 

< 0.001  0.09 [0.01–
0.51] 

0.91 [0.81–
0.96] 

0.60 [0.04–
0.90] 

< 0.001 

Pulmonary causes, n 
(%) 

189 (22.2) 721 (77.2) 910 (50.9) < 0.001  79 (25.6) 208 (91.2) 287 (53.4) < 0.001 

Probability for cardiac 
origin 

0.90 [0.57–
0.99] 

0.13 [0.05–
0.42] 

0.47 [0.10–
0.93] 

< 0.001  0.91 [0.49–
0.99] 

0.09 [0.04–
0.19] 

0.40 [0.10–
0.96] 

< 0.001 

Cardiac causes, n (%) 664 (77.8) 213 (22.8) 877 (49.1) < 0.001  230 (74.4) 20 (8.8) 250 (46.6) < 0.001 

Variables are expressed as the mean ± SD, median [IQR], or n (%). AI, artificial intelligence; AF, atrial fibrillation; BMI, body mass index; BUN, blood urea 

nitrogen; CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRP, c-reactive protein; DM, diabetes 
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mellitus; E, early mitral inflow; e’, septal mitral annular velocity; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; ESR, erythrocyte 

sedimentation rate; HF, heart failure; HTN, hypertension; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro-brain 

natriuretic peptide; WBC, white blood cell 
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Supplementary Table S3. Baseline characteristics of patients with a high probability of cardiac origin in the pulmonary origin group 
 

  

AI-ECG prediction 
probability 

≥ 0.90 
(n = 65) 

AI-ECG prediction 
probability 
0.80-0.89 
(n = 30) 

AI-ECG prediction 
probability  
0.70–0.79 
(n = 34) 

Total 
(n = 129) p-value 

True cardiac causes, n (%) 53 (81.5) 23 (76.7) 20 (58.8) 96 (74.4) 0.046 

 Clinical characteristics      

   Age, years 70.6 ± 15.6 77.0 ± 9.5 71.2 ± 16.8 72.3 ± 14.9 0.137 

   Female sex, n (%) 15 (23.1) 10 (33.3) 22 (65.7) 47 (36.4) <0.001 

   BMI (kg/m2) 23.5 ± 4.2 22.1 ± 3.4 23.5 ± 4.3 23.2 ± 4.1 0.331 

   Prior history of HF, n (%) 15 (23.1) 7 (23.3) 3 (8.8) 25 (19.4) 0.193 

   DM, n (%) 17 (26.2) 6 (20.0) 6 (17.6) 29 (22.5) 0.587 

   HTN, n (%) 20 (30.8) 9 (30.0) 9 (26.5) 38 (29.5) 0.903 

   CKD, n (%) 8 (12.3) 2 (6.7)  0 (0.0) 10 (7.8) 0.065 

   CAD, n (%) 24 (36.9) 3 (10.0) 6 (17.6) 33 (25.6) 0.009 

   MI, n (%) 9 (13.8) 0 (0.0) 2 (5.9) 11 (8.5) 0.069 

   COPD, n (%) 10 (15.4) 6 (20.0) 2 (5.9) 18 (14.0) 0.209 

   AF, n (%) 14 (21.5) 8 (26.7) 2 (5.9) 24 (18.6) 0.071 

Laboratory findings      

   LVEF (%) 45.1 ± 16.2 56.0 ± 12.2 53.8 ± 15.5 49.2 ± 15.9 0.018 

E/e’ 19.0 ± 7.5 15.2 ± 5.6 16.3 ± 6.4 17.6 ± 7.0 0.130 

Laboratory findings      

  BUN (mg/dL) 31.7 ± 24.8 28.3 ± 16.5 22.2 ± 10.2 28.4 ± 20.3 0.084 

  Creatinine (mg/dL) 2.4 ± 2.8 1.4 ± 0.9 1.1 ± 0.5 1.8 ± 2.1 0.007 

  eGFR (mL/min/1.73m2) 55.2 ± 63.8 55.5 ± 24.3 70.7 ± 34.3 59.4 ± 50.3 0.313 

  NT-proBNP (pg /mL) 3306.0 [1050.5-9967.5] 1479.5 [518.0-4979.0] 3125.0 [576.0-4568.0] 2442.5 [638.0-6982.0] 0.174 

  Log-NT-proBNP (pg /mL) 3.5 [3.0–4.0] 3.2 [2.7–3.7] 3.5 [2.8–3.6] 3.4 [2.8–3.8] 0.176 
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  WBC (10³/μL) 10.2 ± 4.6 10.6 ± 8.2 13.3 ± 6.9 11.1 ± 6.3 0.082 

  Neutrophil (%) 76.8 ± 10.3 73.9 ± 15.7 79.3 ± 11.3 76.8 ± 12.1 0.206 

  ESR (mm/h) 44.8 ± 36.6 53.6 ± 31.9 53.8 ± 33.8 49.2 ± 34.9 0.357 

  CRP (mg/dL) 8.4 ± 8.1 11.6 ± 11.7 14.4 ± 12.1 10.7 ± 10.4 0.020 

ECG findings      

Heart rate (bpm) 95.7 ± 25.0 96.6 ± 25.1 93.1 ± 21.5 95.2 ± 24.2 0.840 

   PR interval (ms) 163.7 ± 28.9 154.9 ± 37.4 156.1 ± 40.2 159.7 ± 34.6 0.579 

   QRS duration (ms) 110.5 ± 26.5 96.3 ± 18.8 98.0 ± 24.2 104.0 ± 25.2 0.015 

QT interval (ms) 383.3 ± 57.6 362.4 ± 40.0 393.7 ± 74.4 381.3 ± 60.2 0.135 

Corrected QT interval (ms) 471.8 ± 46.6 451.0 ± 37.8 478.8 ± 62.6 468.9 ± 50.6 0.094 

P axis 39.0 ± 30.8 41.8 ± 25.9 40.0 ± 23.9 39.8 ± 28.0 0.946 

R axis 6.7 ± 58.2 25.7 ± 39.8 31.1 ± 38.7 17.5 ± 51.0 0.061 

T axis 74.6 ± 78.5 41.9 ± 79.0 68.0 ± 67.6 65.4 ± 77.0 0.186 

Variables are expressed as mean ± SD, median [IQR], or n (%). AI, artificial intelligence; AF, atrial fibrillation; BMI, body mass index; BUN, blood urea nitrogen; 
CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRP, c-reactive protein; DM, diabetes mellitus; 
E, early mitral inflow; e’, septal mitral annular velocity; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; ESR, erythrocyte sedimentation 
rate; HF, heart failure; HTN, hypertension; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro brain natriuretic peptide; 
WBC, white blood cell 
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Supplementary Table S4. Detailed characteristics of the patients with pulmonary origin that were 

misinterpreted by AI-ECG as ‘cardiac origin’ 

  
Cases in which AI-ECG misinterpreted patients admitted 

with pulmonary origin as those with 'cardiac origin’ in 
(n = 33) 

Characteristics  

  Abnormal ECG  

   WPW 1 

   LBBB 3 

   RBBB 5 

   LVH 7 

   RVH 1 

   ST-T segment anomaly 4 

   Poor R progression pattern 1 

   Pacemaker rhythm 1 

  Abnormal lung condition   

   Lung cancer 4 

   Tb destroyed lung  1 

   Empyema thorax   1 

   Emphysema lung  1 

  No definite abnormal condition 4 

AI, artificial intelligence; ECG, electrocardiogram; LBBB, left bundle branch block; LVH, left ventricular 
hypertrophy; RBBB, right bundle branch block; RVH, right ventricular hypertrophy; Tb, tuberculosis; WPW, 
Wolff-Parkinson-White
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Supplementary Figure S1. AUROC curve of an AI-ECG model predicting patients with an LVEF ≤40% 

after pre-training. AI, artificial intelligence; AUROC, area under the receiver operating characteristic curve; 

ECG, electrocardiogram; EF, ejection fraction; LVEF, left ventricular ejection fraction. 
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Supplementary Figure S2. AUROC curves comparing the diagnostic performance of the baseline and 

extended models. The blue line indicates the baseline model, including clinical, laboratory, and 

echocardiographic parameters, as demonstrated in Table 2. The green line indicates the extended model, 

including all parameters from the baseline model plus the AI-ECG probability. AI, artificial intelligence; 

AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; ECG, 

electrocardiogram; IDI, integrated discrimination improvement; NRI, net reclassification improvement. 
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Supplementary Materials 

 

Supplementary Table S1. Baseline characteristics of patients with 1:1 matched study population 

  
Cardiac origin 

(n = 1,162) 
Pulmonary origin 

(n = 1,162) 
Total 

(n = 2,324) p-value 

 Clinical characteristics     

   Age, years 72.7 ± 14.0 73.7 ± 12.2 73.2 ± 13.2 0.419 

   Female sex, n (%) 642 (55.2) 687 (59.1) 1329 (57.2) 0.065 

   BMI (kg/m2) 24.2 ± 4.7 24.3 ± 4.4 24.3 ± 4.5 0.650 

   Prior history of HF, n (%) 269 (23.1) 222 (19.1) 491 (21.1) 0.019 

   DM, n (%) 328 (28.2) 382 (32.9) 710 (30.6) 0.017 

   HTN, n (%) 426 (36.7) 401 (34.5) 827 (35.6) 0.298 

   CKD, n (%) 254 (21.9) 44 (3.8) 298 (12.8) < 0.001 

   CAD, n (%) 222 (19.1) 145 (12.5) 367 (15.8) < 0.001 

   MI, n (%) 75 (6.5) 44 (3.8) 119 (5.1) 0.005 

   COPD, n (%) 56 (4.8) 160 (13.8) 216 (9.3) < 0.001 

   AF, n (%) 450 (38.7) 138 (11.9) 588 (25.3) < 0.001 

Laboratory findings     

   LVEF (%) 45.6 ± 14.7 54.5 ± 13.1 48.1 ± 14.8 < 0.001 

E/e’ 17.3 ± 7.5 18.1 ± 7.0 17.5 ± 7.4 0.019 

Laboratory findings     

  BUN (mg/dL) 24.7 ± 15.7 23.5 ± 16.2 24.1 ± 16.0 < 0.001 

  Creatinine (mg/dL)  1.4 ± 1.3  1.3 ± 1.1 1.4 ± 1.2 0.225 

  eGFR (mL/min/1.73 m2) 63.0 ± 30.4 65.2 ± 31.7 64.1 ± 31.1 0.229 

  NT-proBNP (pg/mL) 3566.0 [1086.0–8238.0] 663.0 [206.0–2479.0] 1777.0 [445.0–5492.0] < 0.001 
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  Log-NT-proBNP (pg/mL)  3.6 [3.0–3.9]  2.8 [2.3–3.4]  3.2 [2.6–3.7] < 0.001 

  WBC (10³/μL)  8.6 ± 3.8 11.5 ± 6.2  10.0 ± 5.3 < 0.001 

  Neutrophil (%) 67.2 ± 13.2 77.4 ± 11.9 72.3 ± 13.6 < 0.001 

  ESR (mm/h) 23.1 ± 24.0 53.3 ± 34.4 38.2 ± 33.3 < 0.001 

  CRP (mg/dL)  1.8 ± 3.0 11.2 ± 10.5  6.7 ± 9.2 < 0.001 

ECG findings     

   Heart rate (bpm) 79.5 ± 18.5 81.5 ± 19.7 80.6 ± 19.1 0.042 

   PR interval (ms) 162.6 ± 31.7 162.1 ± 30.2 162.4 ± 30.9 0.755 

   QRS duration (ms) 94.4 ± 18.8 93.9 ± 17.6 94.2 ± 18.2 0.955 

QT interval (ms) 389.9 ± 46.1 388.8 ± 49.9 389.3 ± 48.1 0.482 

Corrected QT interval (ms) 441.0 ± 38.6 444.0 ± 36.0 442.5 ± 37.3 0.023 

P axis 53.7 ± 25.0 52.0 ± 25.6 52.8 ± 25.3 0.830 

R axis 33.6 ± 42.6 36.2 ± 45.2 34.9 ± 44.0 0.450 

T axis 57.4 ± 52.2 53.9 ± 51.4 55.6 ± 51.8 0.549 

 AI-ECG prediction probability     

Probability for pulmonary origin  0.10 [0.01–0.45] 0.88 [0.64–0.95] 0.54 [0.06–0.90] < 0.001 

Pulmonary causes, n (%) 268 (23.1) 929 (79.9) 1197 (51.5) < 0.001 

Probability for cardiac origin  0.90 [0.55–0.99] 0.12 [0.05–0.36] 0.46 [0.10–0.94] < 0.001 

Cardiac causes, n (%) 894 (76.9) 233 (20.1) 1127 (48.5) < 0.001 

Variables are expressed as the mean ± SD, median [IQR], or n (%). AI, artificial intelligence; AF, atrial fibrillation; BMI, body mass index; BUN, blood urea 

nitrogen; CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRP, c-reactive protein; DM, diabetes 

mellitus; E, early mitral inflow; e’, septal mitral annular velocity; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; ESR, erythrocyte 

sedimentation rate; HF, heart failure; HTN, hypertension; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro-brain 

natriuretic peptide; WBC, white blood cell 
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Supplementary Table S2. Baseline characteristics of patients according to the age distribution of 65 years in the 1:1 matched study population 

 Age≥65 years  Age<65 years 

Cardiac 
origin (n = 

853) 

Pulmonary 
origin  

(n = 934) 

Total  

(n = 1,787)  

p-value  Cardiac 
origin (n = 

309) 

Pulmonary 
origin  

(n = 228) 

Total  

(n = 537) 
p-value 

 Clinical 
characteristics 

         

   Age, years 79.6 ± 8.0 78.4 ± 7.3 79.0 ± 7.7 0.001  53.8 ± 8.8 54.6 ± 9.1 54.1 ± 8.9 0.162 

   Female sex, n (%) 404 (47.4) 553 (59.2) 957 (53.6) < 0.001  238 (77.0) 134 (58.8) 372 (69.3) < 0.001 

   BMI (kg/m2) 23.6 ± 4.1 23.9 ± 4.1 23.7 ± 4.1 0.135  26.1 ± 5.6 26.0 ± 5.3 26.0 ± 5.5 0.880 

   Prior history of HF, n 
(%) 

192 (22.5) 208 (22.3) 400 (22.4) 0.949  77 (24.9) 14 (6.1) 91 (16.9) < 0.001 

   DM, n (%) 243 (28.5) 322 (34.5) 565 (31.6) 0.008  85 (27.5) 60 (26.3) 145 (27.0) 0.834 

   HTN, n (%) 349 (40.9) 360 (38.5) 709 (39.7) 0.330  77 (24.9) 41 (18.0) 118 (22.0) 0.070 

   CKD, n (%) 211 (24.7) 37 (4.0) 248 (13.9) < 0.001  43 (13.9) 7 (3.1) 50 (9.3) < 0.001 

   CAD, n (%) 164 (19.2) 139 (14.9) 303 (17.0) 0.017  58 (18.8) 6 (2.6) 64 (11.9) < 0.001 

   MI, n (%) 52 (6.1) 42 (4.5) 94 (5.3) 0.160  23 (7.4) 2 (0.9) 25 (4.7) 0.001 

   COPD, n (%) 51 (6.0) 144 (15.4) 195 (10.9) < 0.001  5 (1.6) 16 (7.0) 21 (3.9) 0.003 

   AF, n (%) 390 (45.7) 122 (13.1) 512 (28.7) < 0.001  60 (19.4) 16 (7.0) 76 (14.2) < 0.001 

Laboratory findings          

LVEF (%) 47.2 ± 14.3 54.5 ± 13.2 49.6 ± 14.3 < 0.001  41.1 ± 15.0 53.8 ± 12.1 42.5 ± 15.3 < 0.001 

E/e’ 18.1 ± 7.6 18.1 ± 7.0 18.1 ± 7.4 0.536  15.0 ± 6.8 17.1 ± 5.5 15.1 ± 6.7 0.086 

Laboratory findings          

  BUN (mg/dL) 26.3 ± 16.4 25.0 ± 16.0 25.6 ± 16.2 0.015  20.3 ± 12.6 17.3 ± 15.6 19.0 ± 14.0 < 0.001 

  Creatinine (mg/dL)  1.4 ± 1.2  1.3 ± 0.9  1.4 ± 1.1 0.859   1.5 ± 1.7  1.2 ± 1.7  1.4 ± 1.7 < 0.001 

  eGFR (mL/min/1.73 
m2) 

59.2 ± 29.0 61.6 ± 30.6 60.4 ± 29.9 0.199  73.4 ± 31.9 80.0 ± 31.7 76.2 ± 32.0 0.024 

  NT-proBNP (pg/mL) 4182.0 832.0 1990.5 < 0.001  1935.5 265.0 1074.0 < 0.001 
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[1552.5–
9029.0] 

[262.0–
2916.0] 

[505.0–
5837.0] 

[486.0–
5658.0] 

[72.0–
1074.0] 

[189.0–
3961.5] 

  Log-NT-proBNP 
(pg/mL) 

 3.6 [3.2–
4.0] 

 2.9 [2.4–
3.5] 

 3.3 [2.7–
3.8] 

< 0.001   3.3 [2.7–
3.8] 

 2.4 [1.9–
3.0] 

 3.0 [2.3–
3.6] 

< 0.001 

  WBC (10³/μL)  8.3 ± 3.6 11.6 ± 6.3 10.0 ± 5.4 < 0.001   9.4 ± 4.1 11.0 ± 5.7 10.0 ± 4.9 0.002 

  Neutrophil (%) 68.1 ± 13.0 77.8 ± 11.6 73.2 ± 13.2 < 0.001  64.7 ± 13.5 76.1 ± 12.8 69.6 ± 14.4 < 0.001 

  ESR (mm/h) 25.8 ± 23.9 53.7 ± 34.7 40.4 ± 33.1 < 0.001  15.5 ± 22.6 51.8 ± 33.2 30.9 ± 32.9 < 0.001 

  CRP (mg/dL)  1.9 ± 3.2 11.1 ± 10.5  6.8 ± 9.2 < 0.001   1.3 ± 2.5 11.6 ± 10.8  6.0 ± 9.1 < 0.001 

ECG findings          

   Heart rate (bpm) 81.7 ± 18.3 81.8 ± 18.5 81.7 ± 18.3 0.009  78.4 ± 18.5 81.5 ± 20.1 80.1 ± 19.5 0.965 

   PR interval (ms) 157.0 ± 
24.1 

158.4 ± 
24.8 

157.6 ± 
24.4 

0.149  165.8 ± 
34.9 

163.5 ± 
31.8 

164.6 ± 
33.3 

0.374 

   QRS duration (ms) 93.4 ± 16.5 94.0 ± 14.1 93.7 ± 15.5 0.552  94.9 ± 19.9 93.9 ± 18.6 94.4 ± 19.2 0.183 

QT interval (ms) 379.1 ± 
39.1 

383.0 ± 
39.2 

380.7 ± 
39.1 

0.070  395.5 ± 
48.5 

390.7 ± 
52.8 

392.9 ± 
50.9 

0.274 

Corrected QT interval 
(ms) 

435.2 ± 
32.0 

439.6 ± 
30.6 

437.1 ± 
31.5 

0.232  443.9 ± 
41.3 

445.4 ± 
37.5 

444.7 ± 
39.3 

0.082 

P axis 53.2 ± 19.8 53.5 ± 25.7 53.4 ± 22.5 0.710  53.9 ± 27.4 51.5 ± 25.6 52.6 ± 26.5 0.925 

R axis 44.3 ± 40.6 43.5 ± 41.1 44.0 ± 40.8 0.076  28.1 ± 42.6 33.8 ± 46.3 31.2 ± 44.7 0.957 

T axis 49.4 ± 38.6 50.0 ± 38.5 49.7 ± 38.6 0.150  61.5 ± 57.5 55.2 ± 54.9 58.1 ± 56.2 0.593 

AI-ECG prediction 
probability 

         

Probability for 
pulmonary origin 

0.10 [0.01–
0.43] 

0.87 [0.58–
0.95] 

0.53 [0.07–
0.90] 

< 0.001  0.09 [0.01–
0.51] 

0.91 [0.81–
0.96] 

0.60 [0.04–
0.90] 

< 0.001 

Pulmonary causes, n 
(%) 

189 (22.2) 721 (77.2) 910 (50.9) < 0.001  79 (25.6) 208 (91.2) 287 (53.4) < 0.001 

Probability for cardiac 
origin 

0.90 [0.57–
0.99] 

0.13 [0.05–
0.42] 

0.47 [0.10–
0.93] 

< 0.001  0.91 [0.49–
0.99] 

0.09 [0.04–
0.19] 

0.40 [0.10–
0.96] 

< 0.001 

Cardiac causes, n (%) 664 (77.8) 213 (22.8) 877 (49.1) < 0.001  230 (74.4) 20 (8.8) 250 (46.6) < 0.001 

Variables are expressed as the mean ± SD, median [IQR], or n (%). AI, artificial intelligence; AF, atrial fibrillation; BMI, body mass index; BUN, blood urea 

nitrogen; CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRP, c-reactive protein; DM, diabetes 
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mellitus; E, early mitral inflow; e’, septal mitral annular velocity; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; ESR, erythrocyte 

sedimentation rate; HF, heart failure; HTN, hypertension; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro-brain 

natriuretic peptide; WBC, white blood cell 
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Supplementary Table S3. Baseline characteristics of patients with a high probability of cardiac origin in the pulmonary origin group 
 

  

AI-ECG prediction 
probability 

≥ 0.90 
(n = 65) 

AI-ECG prediction 
probability 
0.80-0.89 
(n = 30) 

AI-ECG prediction 
probability  
0.70–0.79 
(n = 34) 

Total 
(n = 129) p-value 

True cardiac causes, n (%) 53 (81.5) 23 (76.7) 20 (58.8) 96 (74.4) 0.046 

 Clinical characteristics      

   Age, years 70.6 ± 15.6 77.0 ± 9.5 71.2 ± 16.8 72.3 ± 14.9 0.137 

   Female sex, n (%) 15 (23.1) 10 (33.3) 22 (65.7) 47 (36.4) <0.001 

   BMI (kg/m2) 23.5 ± 4.2 22.1 ± 3.4 23.5 ± 4.3 23.2 ± 4.1 0.331 

   Prior history of HF, n (%) 15 (23.1) 7 (23.3) 3 (8.8) 25 (19.4) 0.193 

   DM, n (%) 17 (26.2) 6 (20.0) 6 (17.6) 29 (22.5) 0.587 

   HTN, n (%) 20 (30.8) 9 (30.0) 9 (26.5) 38 (29.5) 0.903 

   CKD, n (%) 8 (12.3) 2 (6.7)  0 (0.0) 10 (7.8) 0.065 

   CAD, n (%) 24 (36.9) 3 (10.0) 6 (17.6) 33 (25.6) 0.009 

   MI, n (%) 9 (13.8) 0 (0.0) 2 (5.9) 11 (8.5) 0.069 

   COPD, n (%) 10 (15.4) 6 (20.0) 2 (5.9) 18 (14.0) 0.209 

   AF, n (%) 14 (21.5) 8 (26.7) 2 (5.9) 24 (18.6) 0.071 

Laboratory findings      

   LVEF (%) 45.1 ± 16.2 56.0 ± 12.2 53.8 ± 15.5 49.2 ± 15.9 0.018 

E/e’ 19.0 ± 7.5 15.2 ± 5.6 16.3 ± 6.4 17.6 ± 7.0 0.130 

Laboratory findings      

  BUN (mg/dL) 31.7 ± 24.8 28.3 ± 16.5 22.2 ± 10.2 28.4 ± 20.3 0.084 

  Creatinine (mg/dL) 2.4 ± 2.8 1.4 ± 0.9 1.1 ± 0.5 1.8 ± 2.1 0.007 

  eGFR (mL/min/1.73m2) 55.2 ± 63.8 55.5 ± 24.3 70.7 ± 34.3 59.4 ± 50.3 0.313 

  NT-proBNP (pg /mL) 3306.0 [1050.5-9967.5] 1479.5 [518.0-4979.0] 3125.0 [576.0-4568.0] 2442.5 [638.0-6982.0] 0.174 

  Log-NT-proBNP (pg /mL) 3.5 [3.0–4.0] 3.2 [2.7–3.7] 3.5 [2.8–3.6] 3.4 [2.8–3.8] 0.176 
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  WBC (10³/μL) 10.2 ± 4.6 10.6 ± 8.2 13.3 ± 6.9 11.1 ± 6.3 0.082 

  Neutrophil (%) 76.8 ± 10.3 73.9 ± 15.7 79.3 ± 11.3 76.8 ± 12.1 0.206 

  ESR (mm/h) 44.8 ± 36.6 53.6 ± 31.9 53.8 ± 33.8 49.2 ± 34.9 0.357 

  CRP (mg/dL) 8.4 ± 8.1 11.6 ± 11.7 14.4 ± 12.1 10.7 ± 10.4 0.020 

ECG findings      

Heart rate (bpm) 95.7 ± 25.0 96.6 ± 25.1 93.1 ± 21.5 95.2 ± 24.2 0.840 

   PR interval (ms) 163.7 ± 28.9 154.9 ± 37.4 156.1 ± 40.2 159.7 ± 34.6 0.579 

   QRS duration (ms) 110.5 ± 26.5 96.3 ± 18.8 98.0 ± 24.2 104.0 ± 25.2 0.015 

QT interval (ms) 383.3 ± 57.6 362.4 ± 40.0 393.7 ± 74.4 381.3 ± 60.2 0.135 

Corrected QT interval (ms) 471.8 ± 46.6 451.0 ± 37.8 478.8 ± 62.6 468.9 ± 50.6 0.094 

P axis 39.0 ± 30.8 41.8 ± 25.9 40.0 ± 23.9 39.8 ± 28.0 0.946 

R axis 6.7 ± 58.2 25.7 ± 39.8 31.1 ± 38.7 17.5 ± 51.0 0.061 

T axis 74.6 ± 78.5 41.9 ± 79.0 68.0 ± 67.6 65.4 ± 77.0 0.186 

Variables are expressed as mean ± SD, median [IQR], or n (%). AI, artificial intelligence; AF, atrial fibrillation; BMI, body mass index; BUN, blood urea nitrogen; 
CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRP, c-reactive protein; DM, diabetes mellitus; 
E, early mitral inflow; e’, septal mitral annular velocity; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; ESR, erythrocyte sedimentation 
rate; HF, heart failure; HTN, hypertension; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro brain natriuretic peptide; 
WBC, white blood cell 
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Supplementary Table S4. Detailed characteristics of the patients with pulmonary origin that were 

misinterpreted by AI-ECG as ‘cardiac origin’ 

  
Cases in which AI-ECG misinterpreted patients admitted 

with pulmonary origin as those with 'cardiac origin’ in 
(n = 33) 

Characteristics  

  Abnormal ECG  

   WPW 1 

   LBBB 3 

   RBBB 5 

   LVH 7 

   RVH 1 

   ST-T segment anomaly 4 

   Poor R progression pattern 1 

   Pacemaker rhythm 1 

  Abnormal lung condition   

   Lung cancer 4 

   Tb destroyed lung  1 

   Empyema thorax   1 

   Emphysema lung  1 

  No definite abnormal condition 4 

AI, artificial intelligence; ECG, electrocardiogram; LBBB, left bundle branch block; LVH, left ventricular 
hypertrophy; RBBB, right bundle branch block; RVH, right ventricular hypertrophy; Tb, tuberculosis; WPW, 
Wolff-Parkinson-White
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Supplementary Figure S1. AUROC curve of an AI-ECG model predicting patients with an LVEF ≤40% 

after pre-training. AI, artificial intelligence; AUROC, area under the receiver operating characteristic curve; 

ECG, electrocardiogram; EF, ejection fraction; LVEF, left ventricular ejection fraction. 
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Supplementary Figure S2. AUROC curves comparing the diagnostic performance of the baseline and 

extended models. The blue line indicates the baseline model, including clinical, laboratory, and 

echocardiographic parameters, as demonstrated in Table 2. The green line indicates the extended model, 

including all parameters from the baseline model plus the AI-ECG probability. AI, artificial intelligence; 

AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; ECG, 

electrocardiogram; IDI, integrated discrimination improvement; NRI, net reclassification improvement. 
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