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ABSTRACT
Objective  Tricuspid regurgitation (TR) is a prevalent valve 
disease associated with significant morbidity and mortality. 
We aimed to apply machine learning (ML) to assess risk 
stratification in patients with ≥moderate TR.
Methods  Patients with ≥moderate TR on echocardiogram 
between January 2005 and December 2016 were 
retrospectively included. We used 70% of data to train 
ML-based survival models including 27 clinical and 
echocardiographic features to predict mortality over a 3-
year period on an independent test set (30%). To account 
for differences in baseline comorbidities, prediction was 
performed in groups stratified by increasing Charlson 
Comorbidity Index (CCI). Permutation feature importance 
was calculated using the best-performing model 
separately in these groups.
Results  Of 13 312 patients, mean age 72 ± 13 years and 
7406 (55%) women, 7409 (56%) had moderate, 2646 
(20%) had moderate–severe and 3257 (24%) had severe 
TR. The overall performance for 1-year mortality by 3 ML 
models was good, c-statistic 0.74–0.75. Interestingly, 
performance varied between CCI groups, (c-statistic 
= 0.774 in lowest CCI group and 0.661 in highest CCI 
group). The performance decreased over 3-year follow-up 
(average c-index 0.78). Furthermore, the top 10 features 
contributing to these predictions varied slightly with the 
CCI group, the top features included heart rate, right 
ventricular systolic pressure, blood pressure, diuretic use 
and age.
Conclusions  Machine learning of common clinical 
and echocardiographic features can evaluate mortality 
risk in patients with TR. Further refinement of models 
and validation in prospective studies are needed before 
incorporation into the clinical practice.

INTRODUCTION
Tricuspid regurgitation (TR) of mild or 
greater severity is estimated to be prevalent 
in 15%–18% of the general population.1 
While some studies have shown that severe 
TR is associated with adverse outcome 
(heart failure hospitalisation and cardiovasm
cular mortality) in heterogenous groups of 
patients,2 others have shown that presence of 
TR of any severity is associated with adverse 

clinical outcomes, and ≥moderate TR is an 
independent predictor of mortality.3 4 With 
many recent studies showing high morbidity 
and mortality associated with TR, novel scores 
and classifications have been developed to 
risk stratify patients.5–8 There continues to be 
a growing need to better risk stratify patients 
with chronic severe TR and identify features 
associated with mortality,9 especially with the 
recent emergence of data that may support 
percutaneous transcatheter repair option 
for selected patients.10 We therefore sought 
to evaluate the role of machine learning 
(ML) including various clinical and echom
cardiographic variables to predict mortality 
in a large cohort of patients with ≥moderate 
(haemodynamically significant) TR.

METHODS
A total of 13 312 adult patients with chronic≥m 
moderate TR who underwent echocardiogm
raphy at Mayo Clinic between January 2005 
and December 2016 were included. Addim
tionally, data from 7138 patients from Mayo 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ In the context of high morbidity and mortality as-
sociated with tricuspid regurgitation (TR) and the 
growing practice of early intervention, novel scores 
and classifications have been developed to risk 
stratify patients.

WHAT THIS STUDY ADDS
	⇒ In this large study of patients with ≥moderate TR, 
machine learning enabled assessment of all-cause 
mortality with good performance.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Machine learning-based prediction tools may help 
in risk stratification of patients with TR and identify 
candidates for early intervention, after further vali-
dation in prospective studies.
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Clinic in Florida and Arizona were used for external valim
dation of our ML model. This patient cohort was previm
ously described.5 6 Excluded were patients with congenm
ital heart disease, prior tricuspid valve intervention, and 
no known follow-up.

Patient characteristics included in the dataset included 
demographics, vitals, comorbidities including Charlson 
Comorbidity Index (CCI), echocardiographic variables 
and laboratory parameters. The relevant echocardiom
graphic variables were extracted from the echocardiogm
raphy report and included the following: measures of 
left ventricular (LV) end-diastolic dimension, LV ejecm
tion fraction, and variables included in diastolic function 
assessment (ratio of mitral early diastolic inflow (E) to 
mitral annulus early diastolic tissue Doppler velocity (e’) 
(E/e’)), information on right ventricular (RV) size and 
function, inferior vena cava size and severity of TR (qualm
itative and when available quantitative assessment)11 
(online supplemental table 1). The demographics, 
comorbidities and laboratory reports were extracted 
from the electronic medical records.

Outcomes and analysis
The primary outcome was all-cause mortality. The vital 
status was retrieved from Mayo and Minnesota death 
records. For the primary analysis, patients not known to 
be deceased were censored at the last date of follow-up.

Data preprocessing
The dataset was randomly split into 70% training and 
validation (including hyperparameter tuning) and 30% 
as the test dataset for reporting results. The two datasets 
were independent of one another. Variables with >30% 
missingness were excluded. Remaining variables were 
imputed using 20 iterations of Multiple Imputation by 
Chained Equations12 implemented by the Python library 
statsmodels. Imputation was performed separately on the 
training and testing datasets to preserve the independm
ence of the datasets. Categorical variables with more than 
two levels were recoded so that each level was encoded as 
a separate binary variable used in modelling.

Modelling
Fivefold cross-validation training scheme was used where 
the training dataset was further divided into 70% for 
training and 30% for validation, repeated five times. 
Three survival model architectures were evaluated, 
including penalised Cox proportional hazard regresm
sion models, random survival forest (RSF) methods 
and extreme gradient boosting methods. Modelling was 
performed with open-source Python framework lifelines 
v0.27.4, and Scikit Survival 0.19.0.13 Hyperparameter 
tuning was used to optimise the top performing example 
of each ML model in each family. Cox proportional 
hazard models were optimised for step size, and penalty 
term while survival forests were optimised for maximum 
features at each node and minimum samples per leaf 
node. Tree-based gradient boosting was optimised for the 

learning rate, sample rate and presence of dropout. All 
models were optimised using appropriate loss functions.

Statistical analysis
Data are presented as frequencies and percentages 
for categoric variables and either as mean (SD, SE of 
mean (SEM)) or median with IQR (Q1–Q3) for continm
uous variables. Model performance was evaluated on 
the test dataset using the Harrel’s concordance index 
(C-Index). C-index was computed at 1 year, 3 years and 
overall survival between model predictions and actual 
survival. In a survival forest model, feature importance 
was evaluated in a permutation-based fashion by a mean 
decrease in accuracy on replacing a feature with random 
data sampled from a distribution similar to the original 
feature. This was achieved by shuffling the data14 using 
the eli5 0.11.0 package. Statistically significant difference 
between the models was computed using the DeLong 
test.15 Calibration plots and Brier score were assessed to 
determine model calibration. Models were calibrated 
using regression-spline interpolation estimates that allow 
for non-proportional hazards and nonlinearity while 
taking censoring into account.16 This adaptive modelm
ling of the observed data allows for a continuous calibram
tion plot for a specific survival time. The ‘rms’ package 
was used to calibrate the performance of the predictive 
model by comparing predicted probabilities to observed 
outcomes.

RESULTS
Of 13 312 patients included in the final analyses, the mean 
age was 72 ± 13 years and 7406 (55.6%) were females. A 
total of 5359 (40.3%) patients had a diagnosis of atrial 
fibrillation, 4291 (32.2%) had ≥moderate left-sided valve 
disease, 6530 (49.0%) had pulmonary hypertension (RV 
systolic pressure >50 mm Hg on transthoracic echocardim
ogram), 6778 (50.9%) had a diagnosis of congestive heart 
failure and 7118 (53.5%) were on diuretics. The baseline 
characteristics of overall cohort and stratified by CCI 
groups are presented in table 1. During median follow-up 
of 3 (IQR: 2.0–9.9) years, 7773 patients (58.3%) died.

All-cause mortality
We used 28 demographic, clinical and echocardiographic 
variables in our modeling. The mean C-index of different 
models for primary outcome of all-cause mortality on 
the test datasets is presented in table 2. Conditional RSF 
ranked the highest among the models (mean (SEM) 
C-index: 0. 755 (2.6×10–3)), followed by XGBoosted 
survival (mean (SEM) C-index: 0. 747 (2.7×10–3)) and Cox 
survival model (mean (SEM) C-index: 0. 736 (2.9×10–3)). 
Overall, there was no significant difference in the perform
mance between models (DeLong test p=0.25). Figure 1 
shows a decrease in performance of the random forest 
model with increasing follow-up period. Similar trend 
was observed with other models. The feature importance 
evaluated on the test dataset by the top performing all-
cause mortality model, that is, conditional RSF model is 
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Table 1  Baseline characteristics

Overall CCI group 1 CCI group 2 CCI group 3 P value

Parameters* Categories 13 312 6519 3409 3384

Demographics

 � Age 72.5 (13.4) 71.2 (14.1) 74.1 (12.6) 73.6 (12.4) <0.001

 � BMI 28.0 (6.6) 27.5 (6.3) 28.0 (6.7) 29.1 (7.1) <0.001

 � Sex* Female 7406 (55.6) 3908 (59.9) 1828 (53.6) 1670 (49.3) <0.001

Male 5906 (44.4) 2611 (40.1) 1581 (46.4) 1714 (50.7)

 � Race* White 11 889 (89.3) 5791 (88.8) 3061 (89.8) 3037 (89.7) <0.001

African American 284 (2.1) 137 (2.1) 68 (2.0) 79 (2.3)

Others 1139 (8.6) 591 (9.1) 280 (8.2) 268 (7.9)

Comorbidities

 � Hypertension  �  7648 (57.5) 2920 (44.8) 2138 (62.7) 2590 (76.5) <0.001

 � Diabetes*  �  3924 (29.5) 934 (14.3) 1179 (34.6) 1811 (53.5) <0.001

 � Chronic kidney disease*  �  1906 (14.3) 83 (1.3) 503 (14.8) 1320 (39.0) <0.001

 � Heart failure*  �  6778 (50.9) 2109 (32.4) 2164 (63.5) 2505 (74.0) <0.001

 � Lung disease*  �  3210 (24.1) 1021 (15.7) 974 (28.6) 1215 (35.9) <0.001

 � Prior cardiac surgery*  �  675 (5.1) 242 (3.7) 171 (5.0) 262 (7.7) <0.001

 � Atrial fibrillation*  �  5359 (40.3) 2547 (39.1) 1433 (42.0) 1379 (40.8) 0.013

 � Peripheral arterial disease*  �  4278 (32.1) 1164 (17.9) 1306 (38.3) 1808 (53.4) <0.001

 � Use of diuretics*  �  7118 (53.5) 2587 (39.7) 2072 (60.8) 2459 (72.7) <0.001

 � Pulmonary hypertension*  �  6460 (48.5) 2677 (41.1) 1821 (53.4) 1962 (58.0) <0.001

 � Outcome (death) *  �  7773 (58.4) 3016 (46.3) 2204 (64.7) 2553 (75.4) <0.001

Vitals

 � Heart rate  �  75.4 (18.0) 74.1 (17.4) 76.4 (19.3) 77.2 (17.8) <0.001

 � Systolic blood pressure  �  121.0 (20.7) 121.7 (20.2) 120.6 (21.0) 120.1 (21.3) 0.001

 � Diastolic blood pressure  �  68.1 (12.7) 69.5 (12.0) 67.5 (12.9) 66.1 (13.6) <0.001

Lab parameters

 � AST  �  74.7 (639.3) 58.0 (559.1) 72.1 (661.1) 109.6 (750.8) 0.001

 � Sodium  �  139.5 (4.1) 140.0 (3.7) 139.2 (4.3) 138.7 (4.6) <0.001

 � Creatinine  �  1.4 (1.0) 1.1 (0.6) 1.5 (1.2) 1.8 (1.3) <0.001

Echo parameters

 � RV size* Normal 8892 (66.8) 4703 (72.1) 2181 (64.0) 2008 (59.3) <0.001

≥ Mildly enlarged 4150 (31.2) 1712 (26.3) 1136 (33.3) 1302 (38.5)

Indeterminate 270 (2.0) 104 (1.6) 92 (2.7) 74 (2.2)

 � RV function* Normal 9694 (72.8) 5120 (78.5) 2352 (69.0) 2222 (65.7) <0.001

≥ Mildly reduced 3056 (23.0) 1168 (17.9) 884 (25.9) 1004 (29.7)

Indeterminate 562 (4.2) 231 (3.5) 173 (5.1) 158 (4.7)

 � TR severity* Moderate 7409 (55.7) 3886 (59.6) 1791 (52.5) 1732 (51.2) <0.001

Moderate–severe 2646 (19.9) 1261 (19.3) 691 (20.3) 694 (20.5)

Severe 3257 (24.5) 1372 (21.0) 927 (27.2) 958 (28.3)

 � Left sided valvular disease*  �  4291 (32.2) 1925 (29.5) 1197 (35.1) 1169 (34.5) <0.001

 � LVEDD-2D  �  49.3 (8.8) 48.4 (8.2) 49.8 (9.4) 50.5 (9.2) 0.219

 � Mitral E to e’ Ratio by PWD,  �  18.6 (38.5) 17.7 (53.9) 19.2 (10.8) 19.8 (10.8) 0.019

 � LVEF  �  53.3 (16.1) 55.8 (14.5) 51.8 (16.7) 49.9 (17.4) <0.001

 � Left ventricular mass index  �  106.4 (37.3) 102.4 (36.2) 109.5 (37.6) 110.7 (38.3) <0.001

 � RVSP  �  52.7 (17.6) 50.4 (18.1) 54.2 (17.1) 55.5 (16.5) <0.001

 � IVC size* Normal 4307 (32.4) 2619 (40.2) 922 (27.0) 766 (22.6) <0.001

Enlarged 9005 (67.6) 3900 (59.8) 2487 (73.0) 2618 (77.4)

 � Systolic volume index  �  40.1 (12.0) 41.1 (11.9) 39.5 (12.1) 38.9 (12.0) <0.001

Data expressed as mean (SD) unless marked * which is expressed as n (%).
AST, aspartate aminotransferase; BMI, body mass index; CCI, Charlson Comorbidity Index; IVC, inferior vena cava; LVEDD, left ventricle end diastolic dimension; LVEF, left ventricle 
ejection fraction; RV, right ventricle; RVSP, right ventricle systolic pressure; TR, tricuspid regurgitation.
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presented in figure 2 . The top features from the other 
models are presented in online supplemental figure 1 
(1A. cox proportional model, 1B. XGBoost model). In 
terms of calibration, the model performed well. The 
Brier score was 0.14±0.02, indicating a good fit. Additionm
ally, the calibration slope was 0.94±0.03 suggesting the 
model was well calibrated. The calibration plot (online 
supplemental fgure 2) visually demonstrates the model’s 
performance. This model was further validated on an 
external dataset which showed similar performance 
measures (online supplemental table 1).

The top features for association with all-cause mortality 
(conditional RSF model) were age, body mass index, heart 
rate and blood pressure, comorbidities like chronic kidney 
disease (CKD) and prior cardiac surgery, signs of congestion 
and hypoperfusion—diuretic use, hyponatraemia, aspartate 
transaminase (AST) and creatinine and echocardiographic 
features such as RV systolic pressure, LV ejection fraction, 
LV end-diastolic dimension.

All-cause mortality divided by comorbid groups
Table 3 shows the performance of the models estimating 
1-year survival in patient groups divided by the CCI. Interm
estingly, the model performed best in group 1 (lowest 
comorbidity index), followed by groups 2 and 3. Table 4 
shows the top 10 features divided by these groups. Some 
of the features common to all the groups included—
age, lung disease, vitals (heart rate, blood pressure), 

laboratory parameters (creatinine and sodium), diuretic 
usage and echocardiographic parameters (RV systolic 
pressure, LV ejection fraction, LV end-diastolic volume 
and stroke-volume index).

DISCUSSION
Our study including 13 312 patients with ≥moderate TR 
has several important novel findings: (1) an ML-based 
algorithm had good performance in estimating mortality 
in patients with≥moderate TR; (2) the top variables 
included in the ML model associated with mortality 
were age, body mass index, vitals (heart rate and blood 
pressure), comorbidities such as CKD and prior cardiac 
surgery, signs of congestion—diuretic use, AST, creatinine 
and hyponatraemia, and echocardiographic features RV 
systolic pressure, LV ejection fraction, LV end-diastolic 
dimension; (3) the accuracy of these model was moderm
ately high, with a C-statistic of 0.75 on the best model.

Table 2  Performance of the machine learning algorithms to 
predict mortality

Survival model
1-year survival
Mean (SEM)

3-year survival
Mean (SEM)

Penalised Cox 0.736 (2.9×10–3) 0.720 (2.3×10–3)

Random forest 0.755 (2.6×10–3) 0.734 (2.3×10–3)

XGBoost 0.747 (2.7×10–3) 0.732 (2.3×10–3)

Figure 1  Figure shows mortality C-index of the random 
forest machine learning model as a function of follow-up 
time.

Figure 2  The permutation feature importance plot of the 
top features contributing to the machine learning model. 
RVSP, right ventricular systolic pressure; AST, aspartate 
aminotransferase; SBP, systolic blood pressure; CKD, 
chronic kidney disease; BMI, body mass index; LVEDD, left 
ventricular end-diastolic dimension; DBP, diastolic blood 
pressure; LVEF, left ventricle ejection fraction.

Table 3  Model performance stratified by Charlson 
Comorbidity Index groups

Survival 
models

Test set c-statistic for 1-year survival in 
Charlson comorbid groups

Group 1 
(n=6519)

Group 2 
(n=3409)

Group 3 
(n=3384)

Penalised Cox 0.774 (2.5×10–3) 0.707 (2.7×10–3) 0.661 (2.1×10–3)

Random Forest 0.770 (2.3×10–3) 0.726 (2.4×10–3) 0.662 (2.5×10–3)

XG Boost 0.767 (2.4×10–3) 0.729 (2.4×10–3) 0.659 (2.2×10–3)
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TR is a prevalent valve disease associated with significant 
morbidity and mortality.2 11 17 There is growing evidence 
that suggests referral for tricuspid valve surgery continues 
to be low and delayed.17–19 The current guidelines recomm
mend isolated tricuspid valve surgery for severe TR with 
signs and symptoms of right sided heart failure (class 2a 
recommendation).20 Isolated tricuspid valve surgery for 
severe TR did not change mortality suggesting delayed 
referral when guidelines are followed.21 22 Similarly, there 
are wide practice variations in surgically treating less 
than severe TR at the time of mitral valve surgery, which 
can result in poor functional outcomes and increased 
mortality in a significant proportion of patients.23 24 
Additionally, recent data suggest that transcatheter edge-
to-edge repair of isolated severe TR is safe and leads to 
significant improvement in quality of life.10 In order to 
better understand the pathophysiology, identify the high-
risk patients and appropriate timing of intervention, 
novel classifications and risk prediction models have 
been developed recently.5–7 25

Our study including a large database of patients with 
≥moderate TR suggests a role for ML to predict outcomes 
in these patients. Prior studies have evaluated the role of 
ML-based risk stratification models to predict outcomes in 
patients with other valvular heart disease.5 26 Our models 
had slightly lower performance than some other studies,27 
which reflects the heterogenous nature of TR with many 
associated comorbidities and different pathophysiological 
subtypes,5 all of which were included in the current study to 
increase the applicability of study results. The performance 
was best early-on and worsened with increasing follow-up 
duration which suggests that associated comorbidities and 

age play a significant role in predicting all-cause mortality. 
The prediction was strongest in the low comorbidity index 
group again suggesting that TR itself may be more important 
in predicting survival in those with fewer comorbidities. To 
study the complex interplay of comorbidities and echocarm
diographic features in patients with TR, novel risk scores 
(TRIO and TRI score) and phenotypes (cluster analysis) 
have been proposed.5–7 The current study further highm
lights the importance of investigating these relationships to 
identify the optimal candidates and timing for intervention 
in these patients after validation in prospective studies.

The key features associated with mortality in our study 
included age, body mass index, vitals (heart rate and 
blood pressure), comorbidities such as CKD and prior 
cardiac surgery, signs of congestion and hypoperfusion—
diuretic use, AST, creatinine and hyponatraemia, and 
echocardiographic features such as RV systolic pressure, 
LV ejection fraction, and LV end-diastolic dimension. 
These factors are similar to previous studies which evalm
uated factors associated with mortality using multivarm
iate analyses.6 8 26 28–30 Previous studies have shown that 
age and other comorbidities such as coronary artery 
disease, lung disease, severe renal failure, haematologm
ical abnormalities like anaemia and thrombocytopenia, 
liver dysfunction with synthetic impairment, diuretic 
use, echocardiographic parameters such as LV systolic 
dysfunction (heart failure with reduced ejection fraction 
(HFrEF)), RV systolic function and RV systolic pressure, 
and vena cava width predict mortality in patients with 
TR.6 8 28–30 In the current study, we were able to evaluate 
a large number of both clinical and echocardiographic 
features together to predict mortality using ML.

Our study has some limitations such as retrospective analm
ysis from a single centre with limited diversity in terms of 
race which may reduce the applicability of study results to 
general population. Due to referral centre study, the data 
on heart failure hospitalisations or cause of mortality were 
not available. Additionally, due to retrospective nature of 
study and by including patients from many years (starting 
2005), the quantitative data on TR quantification (regurgim
tant volume and effective regurgitant orifice area), different 
phenotypes of TR and quantitative markers of RV function 
such as tissue Doppler systolic velocity (s’), strain and 3-D RV 
ejection fraction were available only in a minority of patients 
and could not be included in the models. While some of 
the variables included in the model were qualitative, this 
situation mirrors the real-world scenario where qualitative 
assessments are often the primary means of evaluating TR, 
RV size and function. The balance between qualitative and 
quantitative data enhances the robustness of our model 
and broadens its real-life applicability, while also laying the 
foundation for capturing more quantitative data in future 
studies.

In conclusion, our simple machine-learning based model 
using common clinical and echocardiographic features 
can predict mortality in patients with ≥moderate TR with a 
reasonable precision. This study highlights the role of ML 
models to predict outcomes in ≥moderate TR; these models 

Table 4  Feature performance plot stratified by Charlson 
Comorbidity Index groups

Top 
features Group 1 Group 2 Group 3

10 Heart rate Age Heart rate

9 RVSP Systolic blood 
pressure

Systolic blood 
pressure

8 Systolic blood 
pressure

RVSP Age

7 Diuretic use LVEDD Sodium

6 LVEF Diuretic use LVEDV

5 Lung disease Diastolic blood 
pressure

RVSP

4 Sodium Sodium LVEF

3 Creatinine Stroke volume 
index

Creatinine

2 Diastolic blood 
pressure

Creatinine Diuretic use

1 LVEDD A Fib Lung disease

A Fib, atrial fibrillation; LVEDD, Left ventricular end-diastolic 
dimension; LVEF, Left ventricular ejection fraction; RVSP, right 
ventricular systolic pressure.
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need to be refined by including novel markers of RV funcm
tion and validated in larger prospective studies before incorm
poration in the clinical practice. The current study also lays 
the foundation for future studies using deep learning of 
radiomic features from echocardiogram images and video 
clips in combination with the clinical features studied in this 
report.
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