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Valvular heart disease

Morphological pathology
The macroscopic manifestations of CAS, as a result of 
cellular pathological processes, affect the aortic valve 
and surrounding myocardium (figure 2). Initially, valve 
disease is difficult to detect. This subclinical phase, aortic 
sclerosis, involves valve thickening without impeding 
blood flow.49 50 Within 7 years, 10% of these patients would 
progress to CAS,50 51 distinguished by restricted valve 
motion and haemodynamic obstruction.6 The degree of 

calcium deposition is visualised by CT, although clinical 
severity is more frequently determined with echocardio-
grams assessing valve narrowing.15 52

Valvular narrowing increases myocardial burden, 
precipitating morphological maladaptation. Frank-
Starling forces demonstrate that stenosis increases after-
load and subsequently, greater ventricular pressures 
are needed to maintain cardiac output.53 As a result, 
there is compensatory concentric hypertrophy of the 

Figure 2  Schematic diagram portraying the pathophysiology of CAS. (A) Diagram showing the histological structure of the 
aortic valve. Initial endothelial damage promotes the uptake of LDLs which in turn activate an inflammatory cascade leading 
to subsequent calcification. Of note is the abundance of pathological processes occurring within the fibrosa microenvironment 
The two stages of CAS progression are initiation and propagation. Initiation is associated with inflammation, mediated 
by immune cells, whereas propagation involves fibrocalcification. (B) On a local, valvular level, morphological change is 
visualised by calcium deposits narrowing the valve. (C) As a result of valvular narrowing, Doppler velocities increase leading to 
maladaptive ventricular remodelling. Image from Iung and Vahanian.32 Ang II, angiotensin II; BMP-2, bone morphogenic protein 
2; CAS, calcific aortic stenosis; LDL, low-density lipoprotein; Lrp5: low-density lipoprotein receptor-related protein 5; TGF- β: 
transforming growth factor beta; TNF- α: tumour necrosis factor alpha.
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LV myocardium. Hypertrophy itself can be maladaptive, 
contributing to diastolic dysfunction.54 Chronically, this 
mechanism decompensates due to fibrosis and myocyte 
death. Dilation of the myocardium results in systolic 
dysfunction and heart failure, which is the main driver of 
adverse outcomes.23 The dilated heart can be visualised 
by multiple imaging modalities however CMR imaging 
can identify the underlying fibrosis at an earlier stage.3 23

CURRENT MANAGEMENT
AS is detected following a physical examination. The clin-
ical signs include a slow rising pulse, palpable precordial 
thrill, narrow pulse pressure, ejection-systolic murmur 
radiating to the carotids, soft second heart second due 
to valve restriction and a fourth heart sound.55 Currently, 
transthoracic echocardiography remains the initial 
imaging modality to assess valve morphology and haemo-
dynamics.15 Following diagnosis, patients are stratified 
based on symptom status, valvular anatomy and haemody-
namics. Severe AS is defined by an aortic valve area (AVA) 
≤1 cm2 (or indexed AVA of ≤0.6 cm2m2), peak transval-
vular velocity ≥4.0 m/s, mean pressure gradient ≥40 mm 
Hg and velocity time integral of <0.25.1 15 Severity guides 
intervention timing, valve replacement being the gold 
standard in symptomatic patients.10 15 55 Transcatheter 
aortic valve implantation is preferred in high-risk patients 
over surgery and its indications are expanding.4 16 56

However, limitations around the timing of interven-
tion arise; the balance between early intervention risk 
and irreversible cardiac damage is difficult to evaluate 
within current diagnostic parameters.21 57 Compounding 
this is the lack of robust evidence in treating severe 

asymptomatic AS. As a result, standard recommenda-
tions are passive and suggest watchful waiting.15 Interpre-
tation of symptom severity is challenging in an elderly, 
comorbid, sedentary population and the rapid dete-
rioration of symptomatic AS necessitates the need for 
advanced assessment techniques3 11 55 57 Current research 
is ongoing assessing evaluating earlier valve intervention 
in the asymptomatic patient.19 57

AHA and ESC guidelines currently do not recommend 
intervention in patients with moderate AS but it can be 
considered if the patient is undergoing CABG or surgical 
intervention on the ascending aorta or another valve.15 58 
Large cohort studies do, however, show that moderate 
AS is not a benign condition and that these patients 
have poor survival rates and that AVR in this popula-
tion group is associated with better outcomes.59 Further 
randomised controlled trials (RCTs) are required to 
guide future recommendations. The PROGRESS60 and 
Evolut EXPAND TAVR II Pivotal61 trials are aiming to 
evaluate the efficacy and safety of TAVR in moderate AS 
and the TIAMAR62 and TAVR UNLOAD63 studies are 
also investigating intervention in patients with concom-
itant moderate mitral regurgitation and heart failure, 
respectively.

EMERGING ASSESSMENT TECHNIQUES
Biomarkers
A range of CAS biomarkers have been identified with the 
potential to monitor asymptomatic patients and predict 
postprocedural outcomes.17 64–66 BNP and highly sensi-
tive troponin I (hsTnI) hold promise due to their accessi-
bility, simple analysis and cost-effectiveness (figure 3).17 57

Figure 3  Diagram illustrating the morphological pathology and use of multiple markers within the pathological timeline of 
CAS. Morphological change is demonstrated by myocardial remodelling. Hypertrophy is followed by fibrosis which leads to the 
decompensatory dilation of the heart, visualised through imaging modalities. Specific markers include the CMR techniques of 
T1 mapping, which can quantitatively analyse diffuse fibrosis and late gadolinium enhancement. The red arrow illustrates an 
area of irreversible, replacement myocardial fibrosis. Both troponin and BNP are non-specific biomarkers for the assessment of 
CAS. Troponin detects myocyte injury and fibrosis. Whereas BNP measures the degree of ventricular stretch as a result of the 
fluid overload exhibited in heart failure. Image adapted from Everett et al.57 BNP, brain natriuretic peptide; CAS, calcific aortic 
stenosis; CMR, cardiovascular MR.
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BNP is a hormone secreted in response to cardio-
myocyte stretch commonly used to assess heart failure 
severity.67 68 With regard to AS, BNP can approximate the 
point of ventricular dysfunction, thus predicting symptom-
free survival and improving interventional timing.57 69 70 
The ESC guidelines suggest considering valve replace-
ment in asymptomatic patients with a BNP of over three 
times the normal.15 However, the attributed recommen-
dation class of IIb indicates the need for more RCTs. 
Nonetheless, a recent systematic review of 21 biomarker 
studies associated BNP level rise with all-cause mortality. 
Importantly, BNP was the strongest predictor, with risk 
of death more than doubling.17 Due to the overlap in 
mechanisms behind BNP release, it is non-specific for AS 
in isolation.57 71 As a result, an approach with multiple 
biomarkers may provide better insight.64 65 72

Troponin acts as a surrogate for myocardial damage. 
Mechanistically, it is associated with maladaptive remod-
elling and fibrosis within AS. Currently, it is the preferred 
marker for assessing acute coronary syndromes, increasing 
its accessibility and cost-effectiveness.57 73 In a systematic 
review of AS biomarkers, elevated troponin predicted 
increased risk of death.17 However, three studies did not 
find significance; and the negative finding was supported 
by a large (n=708) retrospective cohort study.66 This vari-
ance further demonstrates the need for RCTs to deter-
mine causality and reduce our reliance on observational 
biomarker studies. A multimarker approach would 
likely increase the specificity of prognosis. EVOLVED, a 
multicentre RCT, seeks to evaluate these limitations by 
screening asymptomatic patients with hsTnI.19 Measure-
ments of hsTnI are more sensitive than BNP as it identi-
fies low-level myocyte death.11 74 Moreover, prior to early 

valve replacement, CMR is used to assess myocardial 
fibrosis as a surrogate of myocardial strain.

Imaging modalities
AS is a disease with isolated valvular and subsequent 
global myocardial dysfunction. CMR can quantify both 
parameters with a high degree of specificity, allowing for 
enhanced risk stratification and treatment timing opti-
misation.3 11 23 Myocardial fibrosis with cardiac biopsy is 
not routinely assessed due to the complication rates75 
and sampling error.23 As the gold standard in measuring 
ventricular function,76 CMR’s growing use in the non-
invasive tissue characterisation of AS gives it the potential 
to revolutionise management especially in the asympto-
matic population.

Aortic compliance and flow are CMR markers which 
can predict morbidity in patients with AS. Arterial load 
consists of resistive load and pulsatile load, the latter 
determined by arterial wave reflections and aortic stiff-
ness. In addition to the increased ventricular pressures 
exerted due to valvular stenosis, increased arterial load 
can further drive maladaptive remodelling and decom-
pensation. In particular, greater magnitudes of wave 
reflections and reduced arterial compliance are associ-
ated with decompensation and a poorer clinical course 
following valve replacement.77 Measurements of LV blood 
flow kinetic energy have also been associated with ventric-
ular remodelling and an inverse correlation to exercise 
capacity.78 The ability of CMR to assess these components 
can lead to greater risk stratification and prediction of 
clinical outcomes, guiding management prior to and 
following treatment. Although these findings are derived 
from small sample sizes,77 78 larger clinical studies are 

Figure 4  (A) Three-chamber cine demonstrating restrictive aortic valve at peak systole with a dephasing artefact at the level of 
accelerated flow through the restrictive aortic valve. (B, C) T1-mapping and extracellular volume (ECV) mapping demonstrating 
a rise in ECV with increased afterload associated fibrotic changes. (D) Late gadolinium enhancement imaging shows no 
evidence of any ischaemic scar. (E, F) Four-dimensional flow mapping demonstrating in 3D the peak velocity (red zones) in 3D 
(E) and in two orthogonal planes (F). The peak velocity was 4.3 m/s, which is consistent with severe AS. 3D, three dimensions; 
AS, aortic stenosis.
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warranted to evaluate the prognostic capabilities of CMR 
and to therapeutically target these biomarkers to improve 
patient quality of life.

The pathology of CAS fibrosis can be visualised using 
late gadolinium enhancement (LGE) and T1 mapping 
(figure  3).57 LGE involves the accumulation of gado-
linium chelate within an expanded extracellular matrix, 
qualitatively detecting replacement fibrosis.79 Multiple 
studies support LGE’s prognostic capabilities in AS.80–83 
In addition, the emergence of quantitatively assessing 
diffuse myocardial fibrosis through T1 mapping is of 
interest23 84 (figure  4). This technique analyses CMR 
maps on a voxel by voxel basis and quantifies fibrosis 
by measuring T1 relaxation time.84 The strength of T1 
mapping is its ability to detect early AS pathology prior 
to decompensation; there is potential to accurately 
monitor patients and intervene to prior to fibrosis.23 85 
Standardised protocols have redressed initial concerns 
with result reproducibility, however, limitations due to 
variance between patients still exist.23 86 As a result, the 
ongoing EVOLVED trial will test the clinical efficacy of 

CMR and provide insight into potential thresholds for 
T1 mapping. Moreover, a greater understanding of early 
patient stratification will assist in developing targeted 
novel therapeutics for CAS.

NOVEL TREATMENTS
There are no efficacious pharmacological treatments 
proven to slow CAS progression.15 21 26 87–89 However, 
multiple therapeutics have been repurposed or devel-
oped to decrease mortality without the associated compli-
cations of valve replacement (table  1).56 90 Novel treat-
ments targeting Lp(a) show promise due to the mole-
cule’s known structure and role in CAS pathophysiology; 
associated genetics and role as a monitorable biomarker 
(figure 5).28 34 87–89 91 92

Elevated Lp(a) potentiates the atherosclerotic process 
of CAS, with an approximated one billion people having 
high levels.93–95 Furthermore, the identified polymor-
phism rs1045872 in genetically susceptible patients 
supports the causal role of Lp(a) concentration on 

Table 1  Summary of the potential medical therapies in aortic stenosis

Treatment Target Mechanism of action Current evidence

Antisense 
oligonucleotide

Lp(a) synthesis RNA therapeutic drug which decreases hepatic synthesis of 
Lp(a), thus inhibiting inflammatory cascade of CAS.88

Reduced Lp(a) concentrations in two RCTs.101

PCSK9 inhibitor LDL and Lp(a) 
concentration 
through PCSK9 
inhibition

Monoclonal antibodies or siRNA indirectly decrease Lp(a) 
infiltration through inhibition of PCSK9. Less circulating 
PCSK9 increases LDL-R on hepatocytes, decreasing 
circulating LDL and Lp(a) concentration.88

Reduced Lp(a) concentrations in FOURIER clinical trial.93 102 An 
ongoing RCT with placebo is assessing its effect on mild-moderate 
CAS progression.103

CETP inhibitor LDL synthesis 
inhibition; 
Lp(a) synthesis 
inhibition to a 
lesser extent

The drug inhibits cholesterol ester transfer from HDL 
to LDL. This decreases LDL and increases HDL levels. 
It also decreases Lp(a) synthesis by decreasing apo(a) 
production.107 108

Multiple RCTs confirmed a reduction of LDL, Lp(a) and cardiovascular 
events.109–111 However, data from previous trials demonstrated an 
increase in cardiovascular events.112 Moreover, the development of 
anacetrapib, treatment arm of the REVEAL study, has stopped.87

Statin LDL cholesterol 
synthesis

Inhibition of HmG-CoA reductase reduces intracellular 
cholesterol. Hepatocytes upregulate LDL-R to increase 
cholesterol uptake, decreasing circulating LDL levels. This is 
theorised to limit CAS pathogenesis and calcification.113

Two large RCTs and current guidelines demonstrate that statins do 
not prevent CAS progression.15 105 106 However, secondary analysis 
of an RCT found a reduction in aortic valve replacement rate in mild 
AS.114

Niacin LDL synthesis; 
Lp(a) indirectly

Niacin inhibits hepatic triglyceride synthesis. This increases 
hepatic apo(b) degradation, thus reducing LDL and Lp(a) 
levels.115

Reduced Lp(a) in a systematic review of RCTs.116 Niacin is not 
currently recommended due to the risk of serious adverse events.89 
The ongoing EAVaLL RCT is testing its use in mild AS patients 
screened for high Lp(a).117

Vitamin K2/
menaquinone-7

Calcium 
metabolism

Vitamin K2 carboxylates, thus potentiates, proteins which 
inhibit calcification.118

The recent AVADEC RCT demonstrated that vitamin K 
supplementation does not influence CAS progression. However, the 
results may not be generalisable due to limited patient diversity.118 

119 Moreover, an RCT in bicuspid patients is ongoing.120

Anti-osteoporotic 
drugs 
(bisphosphonates 
and denosumab)

Calcium 
metabolism and 
osteogenesis

Paradoxical to bone disease, bisphosphonates prevent the 
differentiation of osteoblasts within the valve. Denosumab 
inhibits RANKL, attenuating the CAS pathological cascade.26 

121

Retrospective studies demonstrate a conflicted view on efficacy with 
concomitant osteoporosis confounding results.122 123 A recent RCT 
confirmed that neither drug affected CAS.124

NOACs Coagulation and 
inflammatory 
cascades

Limits valvular inflammation through inhibition of the 
coagulation cascade, thus attenuating atherosclerosis and 
VIC activation.34

VICs in culture demonstrate the downregulation of pro-calcification 
proteins. Expansion to in vivo studies is necessary.125

apo(a), apoprotein(a); apo(b), apoprotein(b); AS, aortic stenosis; AVADEC, The Aortic Valve Decalcification; CAS, calcific aortic stenosis; CETP, 
cholesteryl ester transfer protein; EAVaLL, Early Aortic Valve Lipoprotein(a) Lowering Trial; FOURIER, Further Cardiovascular Outcomes Research 
With PCSK9 Inhibition in Subjects With Elevated Risk; HDL, high-density lipoprotein; HmG-CoA, 3-hydroxy-3-methyl-glutaryl-coenzyme A 
reductase; LDL, low-density lipoprotein; LDL-R, LDL receptor; Lp(a), lipoprotein(a); NOAC, novel oral anticoagulant; PCSK9, proprotein convertase 
subtilisin/kexin type 9; RANKL, receptor activator of nuclear factor kappa-Β ligand; RCT, randomised controlled trial; REVEAL, Randomised 
Evaluation of the Effects of Anacetrapib Through Lipid-modification; RNA, ribonucleic acid; siRNA, small interfering ribonucleic acid; VIC, valve 
interstitial cell.
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calcification progression.47 Genetics also provides a plat-
form from which screening and quantification of circu-
lating Lp(a) could stratify at-risk patients for medical 
intervention.33 96 97 The viability of genetic screening is 
simplified as Lp(a) is the only monogenic risk factor for 
AS.41 Following potential screening, lipoprotein apher-
esis is the current treatment for raised Lp(a). However, its 
clinical viability is limited to severe dyslipidaemia due to 
its costs and inherent extracorporeal risks.89 91 98 Conse-
quently, the development of proprotein convertase subtil-
isin/kexin type 9 (PCSK9) inhibitors and RNA-based 
antisense oligonucleotides (ASOs), as Lp(a) lowering 
therapies, is necessitated (figure 5). Although unable to 
reverse CAS, these drugs aim to slow disease progression 
by targeting the initiation phase.28 As a result, it is hypoth-
esised that their use is most effective in mild-moderate 
AS,99 a population with no current therapeutics of signif-
icant benefit.

PCSK9 inhibitors function to lower LDL and Lp(a) 
through upregulation of LDL receptors on hepatocytes, 
preventing the progression of CAS pathology.88 100 In 
comparison, ASOs use RNA to target apolipoprotein(a) 
overexpression, reducing Lp(a). Both drug classes are 
supported by robust RCTs showing an ability to decrease 
Lp(a)93 101 102 and a study is ongoing to test PCSK9 inhib-
itors’ effect on CAS.103 ASOs may prove to be superior 
for populations with genetic overexpression and very 
high Lp(a) levels.104 This is, in part, due to ASOs greater 
ability to reduce Lp(a): a 99% decrease in comparison 
to 25% with PSCK9 inhibitors.89 Within a wider popula-
tion, this increased effect of ASOs may also prove bene-
ficial.104 In addition to this, the failure of statins to affect 

CAS outcome suggests therapeutics targeting LDLs are 
less effective than anticipated.105 106 Nevertheless, large 
RCTs testing the clinical efficacy of these drugs on the 
progression of CAS are warranted. This, coupled with 
improved in vitro techniques to understand the disease’s 
pathophysiology and develop advanced treatments,33 will 
validate the use of pharmacotherapies in addressing the 
burden of AS.

CONCLUSION
Our perspectives are shifting from passive monitoring to 
active management for the assessment and treatment of 
those with AS. Insight into the two stages of CAS, initi-
ation and propagation, have proven to be invaluable, 
providing novel management options. Of particular 
interest is Lp(a), which can play a multifaceted role in 
genetic screening, biomarker measurement and targeted 
treatment. Further studies into cellular pathology are 
warranted to contextualise current research and iden-
tify additional biomarkers, increasing the specificity of 
a multimarker screening approach. In addition to this, 
asymptomatic management has the potential to be revo-
lutionised through the use of therapeutics to slow disease 
progression and CMR to guide early valve replacement. 
Validation of advanced patient stratification and diag-
nostic workup could propagate the widespread adoption 
of personalised AS therapy. Although many pharmaco-
therapies have exhibited potential, an increase in the 
number of prospective RCTs, with the larger cohort sizes 
of retrospective studies, is necessary to validate their clin-
ical efficacy in reducing CAS burden.

Figure 5  Diagram illustrating the structure of Lp(a) and drug mechanisms for its treatment. Left panel: The characteristic 
disulphide bridge between apolipoprotein(b) and apolipoprotein(a) in Lp(a) differentiates it from low-density lipoprotein. Variance 
within the KIV-2 domain is due to genetics and this affects its molecular weight. Individuals with smaller isoforms are thought 
to have a greater amount of circulating Lp(a). Right panel: Proposed mechanisms for the action of Lp(a) lowering drugs. 
PCKS9 reduces both Lp(a) and LDL concentrations (with a greater impact on the latter) whereas antisense oligonucleotides 
decrease Lp(a) by targeting apolipoprotein(a). Images adapted from Fusco et al92 and Natorska et al.34 Apo(a), apolipoprotein(a); 
ApoB, apolipoprotein(b); KIV, kringle IV domain; KV, kringle V domain; LDL, low-density lipoprotein; oxLipoproteins, oxidised 
lipoproteins; PCSK9, proprotein convertase subtilisin/kexin type 9; S-S, disulphide bridge.
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