Discussion
The main findings of our study are: (1) following either SE or CTCA as first-line investigation for new onset stable chest pain, the progression rates to ICA and the need for revascularisation are similar; (2) the average cost per investigated patient is lower (by £46.11) based on UK tariffs, when patients are initially investigated with SE; (3) in patients with low-intermediate PTP RS, the average investigation cost is considerably lower (by £69.54) if SE is selected as first-line investigation, but in patients with an intermediate-high RS it is slightly higher (by £20.99) with the same rate of progression to ICA and revascularisation in both subgroups, and (4) the ESC RS is the only independent predictor of revascularisation.
NICE have changed dramatically their recommendation on new onset stable chest pain, and they suggest the majority of patients to be investigated with an anatomical imaging test, namely CTCA. The functional tests, such as SE, have been downgraded as second-line investigations in patients who cannot have a CTCA or when CTCA is inconclusive.1 There is a significant ongoing debate on anatomical versus functional tests as first-line investigations,6 7 and in our study, we explored how both strategies perform in a real-life population.
NICE suggest that investigating patients with new onset stable chest pain initially with CTCA can reduce the overall cost of investigations and CAD can be diagnosed more accurately.1 8 Our study suggests that both strategies (ie, CTCA vs SE as first-line investigations) lead to similar rates of ICA and need for revascularisation with a lower cost for SE-first approach. The clinical question of anatomical versus functional first-line test has been addressed in several studies. PROMISE (PROspective Multicenter Imaging Study for Evaluation of Chest Pain), a large outcome trial on 10 003 patients, compared CTCA versus functional imaging tests (mostly stress nuclear MPI) in patients with new onset stable chest pain and intermediate risk, and found no difference in outcomes.9 There was low event rate of 3% in functional tests and 3.3% in CTCA arms. However, CTCA lead to a higher rate of ICA (13.3% vs 5.1%) and revascularisation (6.2% vs 3.2%; p<0.001).
SCOT-HEART (Scottish COmputed Tomography of the HEART Trial) is another major clinical trial, where patients were randomised to standard clinical evaluation (which was ETT) versus ETT plus CTCA. Four thousand and eighty patients completed a follow-up over a median of 4.8 years.10 There was no difference between groups in the need for ICA and revascularisation at 5 years, which is consistent with our study. However, a lower rate of the primary endpoint (death from coronary heart disease or non-fatal myocardial infarction) was observed in the ETT plus CTCA arm. This was primarily driven by a lower rate of non-fatal myocardial infarction and the authors attribute the difference in the medical treatment which was given to ETT plus CTCA arm patients based on more correct diagnosis of CAD. Indeed, 19.4% of patients in the CTCA arm commenced preventive therapy as opposed to 14.7% in the standard care arm. A difference was also noted in antianginal therapies (13.2% vs 10.7%). The ETT, which was used as ‘standard care’ investigation, is known to have low sensitivity (only 50%) in diagnosing CAD, and ESC recommend not using it for diagnostic purposes.2 In clinical practice, it is used only when imaging modalities (functional or anatomical) are not available. In addition, the researchers compared two tests versus one test. It is not surprising that a combination of a functional plus an anatomical investigation appears to be more ‘accurate’ in diagnosing CAD compared with a functional test alone. On the other hand, SCOT-HEART highlighted the significance of diagnosing coronary atherosclerosis, which allows for primary prevention treatment. This by itself consists an important clinical implication. The functional imaging tests cannot detect haemodynamically non-significant coronary atherosclerosis, which undoubtedly is a weakness. On the other hand, they can detect microvascular disease which adds critical prognostic value,11–13 and this is something that anatomical tests cannot identify. Whether these differences between functional and anatomical imaging tests are clinically significant is not entirely clear based on current evidence.9
Our findings further suggest lower cost when the patients are investigated initially with SE, based on UK tariff rates. This is probably attributable to the lower cost of SE compared with CTCA, but also to the fact that in our population a lower proportion of patients required further investigation after SE compared with the need for additional testing following CTCA (2.6% vs 4.5%; p=0.198), though the absolute numbers were relatively small. When the two strategies were compared in a low-intermediate risk population, the cost was even lower with a SE-first approach. In addition to lower cost, SE’s prognostic role should not be overlooked, given that the presence of ischaemia is predictive of adverse events including unstable angina, myocardial infarction, late revascularisation and cardiac death.5 14–17 The wide availability and low cost have established SE as first-line investigation in many institutions worldwide.
The updated NICE guidelines have received a lot of criticism for removing the PTP RS and downgrading the usefulness of functional tests.7 However, NICE claim that the RS was not able to identify sufficiently patients with <10% and>90% PTP.8 Hence, clinical evaluation alone was considered inadequate in distinguishing patients who need or not further investigation. On the contrary, ESC recommend the use of RS, which has been proven to have a predictive role.2 3 In our study, ESC RS was shown to be the only independent predictor of revascularisation, suggesting that the combination of demographic and clinical variables can be useful in contemporary clinical practice to identify patients who will require coronary revascularisation.
ESC have now published new guidelines on stable coronary syndromes,18 which were not available prior to our article submission. Interestingly enough, they still recommend the use of RS and the findings of our study are in line with this recommendation. Additionally, functional tests are still recommended as first-line investigation in symptomatic patients when obstructive CAD cannot be excluded by clinical assessment alone (ie, RS). In the same population, CTCA can also be used, which is an upgrade of CTCA’s role. The Task Force comment that CTCA is preferable in patients with a lower range of clinical likelihood of CAD and characteristics associated with good image quality. On the contrary, they mention that non-invasive functional tests have better rule-in power.
Current literature, along with our study, suggests that both CTCA and functional tests can serve equally well as first-line investigations in patients with new onset stable chest pain. Local expertise, availability and tariffs may make clinicians choose one or the other. In a period that the NHS faces significant financial difficulties, with many Trusts not having the capacity of CT scanners to accommodate the increase in CTCA requests, SE can be a very useful diagnostic tool, relieving stress on facilities and clinicians. Given that the majority of new referrals to cardiology specialist units are for new onset chest pain, we believe that our study will be of special interest to the cardiologists worldwide and may also trigger further research and discussion on the ongoing controversy between NICE and ESC guidelines.
Study limitations
This is a non-randomised observational two-centre study with the inherent limitations and bias and the results should be interpreted accordingly. Two discrete populations from two different centres were compared. The baseline characteristics and the prevalence of risk factors for CAD were similar in the two investigated groups. However, the symptom profile of two groups was different, which may have an impact on the results. This difference highlights the subjectivity in symptoms assessment by clinicians. In any event when the type of chest pain was included in the RS, the latter was found to be similar between the groups. In group B, 13.7% of patients were deemed unsuitable for CTCA. This percentage appears high, but it was the clinician’s decision to avoid the risk of higher dose of beta-blockers and/or high-dose radiation with retrospective gating in a 64-clice CT scanner. Patients who were referred directly for ICA have been excluded from the cost analysis and this may bias the cost analysis. However, the scope of this study was to compare the non-invasive tests as gatekeepers to ICA and not the direct ICA referrals. In addition, high-risk patients are deemed appropriate to be referred directly for ICA according to both NICE and ESC guidelines. No follow-up data have been recorded regarding patient outcome as the scope of the study was to assess the frequency of ICA and revascularisation, when two different guidelines are followed and also evaluate the cost effectiveness. In the view of the absence of long-term follow-up data, the revascularisation rate in our cohort appears lower compared with other studies. Finally, the cost analysis is based on UK tariff rates.