Introduction
While pulse wave propagation phenomena in the systemic circulation have been studied extensively in the past decade,1–8 only limited information is available from the coronary artery tree despite its crucial role for morbidity and mortality worldwide.9 The reason may not only lie in the more difficult access to perform measurements, but also in the more complex nature of pulse wave propagation phenomena in the coronaries. While in the systemic arteries, pulse wave energy is generated proximally by cardiac ejection and all other waves represent passive reflections within the branching tree, the pulse waves in the coronary arteries are produced by both, cardiac ejection and compression/decompression of the myocardial microcirculation. This results in an additional pulse wave energy source located in the periphery of the arterial tree that must be taken into account. Wave intensity analysis (WIA) is a method that allows separating pulse waves into components generated proximally and in the periphery of the arterial tree.10 Furthermore, accelerating and decelerating components can also be identified separately, thus providing useful insight into the source and nature of the coronary pulse wave phenomena. Since coronary blood flow is predominantly diastolic, the main pulse wave event responsible for fluid acceleration is an early diastolic accelerating or suction wave (figure 1).11 The energy source of this pulse wave originates in the periphery from the decompression of the coronary microcirculation during myocardial relaxation, resulting in a suction effect. It has been shown that left ventricular relaxation properties directly influence the amount of this early diastolic suction wave (eaDSW).12 WIA also allows for precise temporal allocation of pulse wave events. This has led to the identification of a pulse wave-free period at mid-diastole when a linear pressure-flow relationship prevails. This has allowed the development of the instantaneous wave-free reserve method, an alternative tool to assess haemodynamic coronary stenosis severity that—unlike fractional flow reserve (FFR)—does not require myocardial hyperaemia,13 and that is now increasingly being implemented in coronary functional diagnostics. In the systemic circulation, it is well-established that pulse waves are reflected at sites of impedance mismatch, such as arterial bifurcations and calibre changes.2 4 In the coronary artery tree, stenoses constitute such mismatch sites, but peripheral pulse wave reflections—potentially leading to their entrapment downstream of stenoses—have not been studied in humans.
The focus of this study was to characterise the eaDSW in a broad range of coronary stenosis severity, and to determine whether (1) microvascular dilatation directly influences its energy, (2) stenosis severity can be assessed proximal to the stenosis, which could prevent the crossing of the stenosis with a guidewire, (3) distal pulse wave entrapment phenomena can be observed in the presence of significant stenoses and (4) coronary collaterals influence these entrapment phenomena. An illustration of these hypotheses is shown in figure 2.