Discussion
In this systematic review, 15 studies with 1877 patients with HFpEF in total were included. We performed a meta-analysis of the prevalence of ID in HFpEF including 1424 patients, highlighting a high prevalence of 59% in this population. In the qualitative analysis of the included studies in this systematic review, the majority demonstrated an association between ID and poorer functional capacity as determined by VO2 max, NYHA class, 6MWT and quality of life. Conversely, three of the four studies assessing the impact of ID on death and rehospitalisation in HFpEF failed to find an association.
The prevalence of ID in HFpEF of 59% is higher than the prevalence of ID in patients with heart failure overall in an international pooled analysis, at 50%,2 suggesting that ID is even more common in patients with HFpEF than patients with HFrEF. There was substantial heterogeneity in the estimate of ID prevalence, with an I2 of 80%; however, this improved significantly to 47% after removal of a single study29 that reported a much lower prevalence than the remaining 10 studies. This suggests that we can be reasonably confident that the prevalence of ID in HFpEF is approximately 60%. The high prevalence of ID underscores the importance of performing iron studies in patients with HFpEF and HFrEF alike.
ID had a deleterious impact on exercise tolerance and functional capacity in the majority of studies included in our qualitative review. Three out of four studies found a relationship between ID and worse VO2 max,20 with similar findings of reduced exercise time with ID. VO2 max is central to exercise tolerance and is markedly reduced in patients with HFpEF for whom impaired exercise capacity is a cardinal feature.30 There are numerous sequences in the oxygen consumption pathway, which is a complex interaction of respiratory, cardiovascular, haematological and skeletal muscle components.30 ID can affect multiple aspects of this pathway, including reducing oxygen storage and oxygen-carrying capacity, and causing mitochondrial dysfunction in both heart and skeletal muscle, resulting in reduced energetic efficiency and anaerobic metabolism.10
Furthermore, ID may have direct impacts on myocardial remodelling. Animal studies have indicated that severe ID can result in significant cardiac remodelling with left ventricular hypertrophy, fibrosis and diastolic dysfunction.31 This is yet to be established in patients with HFpEF; however, there is evidence in the HFrEF cohort, in a study of cardiac resynchronisation therapy (CRT). Patients with HFrEF were followed up for 38±22 months following CRT implantation, and 56% of patients who were iron deficient at the time of initiation of CRT therapy experienced significantly less improvement in left ventricular end-diastolic diameter and less of an increase in left ventricular ejection fraction than those who were iron replete. In addition to these differences in remodelling, ID predicted more heart failure admissions and higher all-cause mortality, along with less symptomatic improvement with CRT.32 This could suggest a role for ID in mediating myocardial remodelling.
This review also identified consistent reductions in quality of life in the two studies that included this as an outcome measure, using the EQ-5D21 and MLWHFQ24 questionnaires. A reduced quality of life in patients with HFpEF who are iron deficient could be due to the aforementioned association with reduced exercise tolerance, limiting patients’ capacity to complete activities of daily living and engage in leisure activities. Furthermore, ID has strong associations with fatigue, which is a likely contributor to this finding. Indeed, the CONFIRM-HF study of intravenous iron treatment in patients with HFrEF found an improvement in fatigue score with the correction of ID with ferric carboxymaltose.33
In patients with HFrEF, ID is associated with significantly poorer survival34; however, clinical trials of intravenous ferric carboxymaltose therapy for ID have not demonstrated a reduction in mortality in patients with HFrEF.33 35 While the study by Martens et al demonstrated a significantly higher composite outcome of hospitalisation and mortality in ID patients with HFpEF,20 the remaining three studies investigating this relationship did not substantiate this; in fact, the study by Nieto Sandoval et al found that survival worsened with increasing ferritin.25 26 28 This may suggest that ID plays a more important role in functional outcomes, rather than impacting hospitalisation and survival. Despite the aforementioned relationship between ID and survival in HFrEF, this parallels what has been found in trials of intravenous ferric carboxymaltose in HFrEF.
Exercise intolerance is central to HFpEF, highlighted by the improved diagnostic acumen of stress echocardiography and exercise invasive haemodynamics for HFpEF relative to resting investigations.36 37 Exercise intolerance often precedes the development of overt HFpEF and episodes of decompensated heart failure, and therefore the greatest potential impact of ID may be in those patients with earlier stages of HFpEF, worsening symptoms and affecting functional outcomes rather than hospitalisation for heart failure or mortality in the later stages of the disease. Interestingly, patients with HFpEF are more likely to die of non-cardiac causes than patients with HFrEF,38 which could blunt the effect that ID has on mortality in HFpEF.
This review establishes a clear role for ID in worsening exercise tolerance, functional outcomes and quality of life in patients with HFpEF. It carries implications for the potential therapeutic benefit of intravenous iron treatment in patients with HFpEF, which could foreseeably significantly improve HFpEF patients’ quality of life and function. This paves the way for the FAIR-HFpEF study, which is currently recruiting (NCT03074591).39 Based on the results of this systematic review, it is less clear whether intravenous ferric carboxymaltose will have an impact on survival and hospitalisation for heart failure; however, functional improvements may even be preferable in this predominantly elderly population.
The strength of our study is that it is the first to comprehensively synthesise the evidence surrounding the impact of ID on outcomes in patients with HFpEF. Furthermore, this systematic review and meta-analysis was performed in accordance with PRISMA recommendations, with independent reviewers for double data extraction and analysis. Therefore, the methodology of this study is sound and represents the best possible synthesis of the available literature.
There are several limitations of this study. Due to a lack of consistency in outcome variables reported by studies meeting our inclusion criteria, we were unable to perform a quantitative synthesis of any of the outcomes associated with ID in patients with HFpEF. A meta-analysis would have strengthened our conclusions regarding the impact of ID on exercise tolerance and functional outcomes. Part of the reason behind this variability in outcome measures was the small number of studies included in this systematic review, which was a result of the strict inclusion criteria to ensure that only patients with HFpEF according to the latest diagnostic criteria were included.
In addition, there was substantial heterogeneity in our findings, particularly in the meta-analysis of the prevalence of ID. This was further amplified when assessing the prevalence of functional and absolute ID separately, rendering these findings difficult to interpret. Sources of heterogeneity included considerable differences in the populations studied, along with different research methodologies. Furthermore, only four studies reported similar baseline characteristics or controlled for factors such as age, gender, ischaemic aetiology, natriuretic peptides, renal function and anaemia.19 20 22 25 Heart failure itself causes ID, as do comorbid conditions such as chronic renal impairment, and therefore ID could be in part reflective of patients with a more severe HFpEF phenotype and concurrent comorbidities. It is important to interpret our findings with the consideration that some of the associations between ID and functional outcome may have been mediated by these confounders.