The heart-gut axis: a role for the gut microbiome in the pathogenesis of heart diseases
Endotoxaemia induces a chronic inflammatory state which contributes to atherosclerosis and CVD
A persistent low-grade inflammatory response underscores a metabolic syndrome and is also a risk factor for CVD.3 4 Inflammatory markers are associated with obesity and the risk of obesity-associated CVD.5 Perturbation of the intestinal microbiota and changes in gut permeability are triggers for the chronic inflammatory state.5 ‘Metabolic endotoxaemia’ is a term used to describe a link among gut bacteria, endotoxins and their circulating levels, with inflammatory-induced obesity and metabolic diseases linking it to CVD.6 The microbiome, with aberrant gut microbiota profiles, is important for the pathogenesis of inflammatory-induced obesity, type 2 diabetes mellitus and other disorders associated with a metabolic syndrome.6 7 Gut microbiota signatures were identified using gut flora analyses in animal obesity, type 1 and type 2 diabetes and non-alcoholic fatty liver disease studies; however, their relevance in humans is yet to be determined.6 8
High serum lipopolysaccharide (LPS) activity is associated with cardiometabolic disorders, which supports the role of bacterial infections and immune responses in their aetiology.9 The transfer of microbiota from obese animals induces metabolic disease and obesity in germ-free animals.10 Conversely, transfer of pathogen-free microbiota from lean healthy human donors to patients with metabolic disease can increase insulin sensitivity.11–13 In a recent study, 2452 patients were followed up for 10 years, and LPS activity was found to be associated with total energy and carbohydrate intake in lean, healthy subjects. High LPS was associated with obesity, metabolic syndrome, diabetes and CHD events, independent of other established risk factors.9
Role of the microbiome in the progression of atherosclerosis
The intestinal microbiota impacts lipid metabolism and may exert a protective effect on atherosclerosis development.14 15 Using a low cholesterol diet in the Apoe−/− mouse model, a group raised in germ-free conditions showed a greater development of atherosclerotic plaques than controls did.16 Treatment of Apoe−/− mice with the gut bacteria Akkermansia muciniphila, reduced the size of atherosclerotic plaques, an effect that was attributed to its anti-inflammatory activity.17
The interplay between the microbiome and dietary-derived compounds is associated with CVD
Several dietary-related effects of the gut microbiota contribute to the pathogenesis of CVD. Acute or long-term high-fat diets lead to a rise in endotoxin levels.6 Metabolites derived from the gut microbial metabolism of choline, phosphatidylcholine and L-carnitine directly contribute to CVD pathology, which underscores the increased risk of eating too much red meat.8 These dietary nutrients have a trimethylamine (TMA) moiety, which participates in the development of atherosclerotic heart disease.18 Hepatic production of trimethylamine-N-oxide (TMAO) from gut microbiota-derived TMA enhanced cardiovascular risk.1 Levels of both gut microbiota-dependent TMA and hepatic flavin monooxygenase 3-dependent TMAO are predictors of atherosclerosis and CVD, further supporting a link between the gut microbiota and heart disease.18–20 In mice, a strong association was noted between atherosclerotic plaque size and plasma TMAO levels.21 A study of the relationship between fasting plasma choline and betaine levels and the risk of major adverse cardiac events (MACE), which includes death, myocardial infarction and stroke, in relation to TMAO was conducted with 3903 subjects undergoing coronary angiography over 3 years of follow-up. This study showed that higher plasma choline and betaine levels were associated with an increased risk of MACE.19 Phosphatidylcholine, TMAO and betaine predicted CVD in an independent large clinical cohort.22 TMAO levels correlated with the degree of severity of heart failure and with adverse outcomes.20
Gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility.21 Dietary supplementation of mice with choline and TMAO promoted macrophage scavenger receptors associated with atherosclerosis, while betaine supplementation only promoted macrophage scavenger receptors associated with atherosclerosis.22 Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary choline-enhanced atherosclerosis. Both phosphatidylcholine/choline and/or L-carnitine are found in large quantities in red meat and were suggested to increase the risk of CVD. Genetic variations controlling the expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice.22 Other studies demonstrated beneficial properties for L-carnitine consumption against metabolic diseases including skeletal muscle insulin resistance and ischaemic heart disease (IHD). Fish is a significant source of TMAO, but dietary fish consumption exerts positive effects on cardiovascular health.1
The gut microbiota promotes energy harvest and storage from the diet and is beneficial during periods of nutrient deprivation.23 Fasting produces a marked change in gut microbiota, with increased levels of short-chain fatty acids (SCFAs) generated from the microbial fermentation of glycans when compared with germ-free controls. During fasting, a microbiota-dependent, peroxisome proliferator-activated receptor-alpha-regulated increase in hepatic ketogenesis occurs, and myocardial metabolism is directed to ketone body utilisation.
Taken together, these data support a role for the interplay between the gut microbiome and dietary compounds in the pathogenesis of heart disease.23
Increased gut permeability as a risk factor for CVD
An impaired intestinal barrier function is followed by BT, and bacterial products trigger an inflammatory cascade. This has been associated with obesity and insulin resistance.24 Moreover, patients with inflammatory bowel diseases (IBDs) who have high permeability of their intestinal barrier suffer from a higher risk of CHD despite a lower prevalence of other risk factors.25 The increased long-term risk of IHD in these patients is related to the chronic inflammatory state, and interventions reducing the inflammatory burden may attenuate this risk.26 During 1–13 years of follow-up after the diagnosis of IBD, the risk of IHD was high. This risk was lower among patients with IBD using 5-aminosalicylic acids, thiopurines and tumour necrosis factor (TNF) alpha antagonists, or among those treated surgically.
SCFAs are fermented from dietary fibres by the gut microbiota.27 The most abundant SCFAs are acetate, propionate and butyrate, which are mostly metabolised in the colon and have numerous effects within the gastrointestinal tract, including maintaining the integrity of the large and small intestinal barrier. SCFAs that reach the systemic circulation were shown to have the ability to modulate CVD risk factors including the reduction of blood pressure and regulation of glucose and lipid homeostasis.28
BT is associated with the pathogenesis of heart failure
BT contributes to congestive heart failure (CHF) leading to a vicious cycle where impaired cardiac function impacts intestinal microcirculation leading to a barrier defect of the intestinal mucosa.25 Small intestinal function is altered in decompensated CHF and translocation of LPS contributes to a state of chronic inflammation.29 CHF is associated with a reduction of active and passive carrier-mediated intestinal transport and is more profound in oedematous patients. Active carrier-mediated intestinal transport was reduced in decompensated CHF, indicating epithelial dysfunction due to intestinal ischaemia. Oedematous patients had the highest blood concentrations of LPS, TNF and soluble tumour necrosis factor receptor R1 (sTNF-R1). CHF patients with higher LPS concentrations had the highest concentrations of TNF and sTNF-R1.29
Composition of gut microbiota in patients with CAD
Studies comparing the gut microbiota derived from faecal samples of three groups: patients with CAD, healthy volunteers and patients with coronary risk factors without CAD, revealed a significant increase in the order Lactobacillales in the CAD group. In addition, a higher percentage of lactobacilli were found in multivessel diseases than in single-vessel diseases.30 A study including almost 12 000 participants showed a correlation between poor oral hygiene and CVD events, elevated C reactive protein and fibrinogen.31 The bacteria found in the atherosclerotic plaques predominantly exist in the oral cavity and gut of the same person, suggesting a similar origin indicating the possible contribution of these bacteria to the development of atherosclerosis and CVD. In a study using pyrosequencing of 16S rRNA in atherosclerotic plaque, oral, and gut samples of 15 patients with atherosclerosis, a combination of Veillonella sp and Streptococcus sp in atherosclerotic plaques correlated with their abundance in the oral cavity. Chryseomonas sp was identified in all atherosclerotic plaque samples with Veillonella sp and Streptococcus sp identified in a majority of the samples.32 Several species, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were shown to cause an increase in plaque size in animal models following an oral or intravenous infection.33–35
An interplay between the gut microbiome with gut and systemic hormones affects CVD
Gut microbiome alterations are related to changes in gut hormones.36 Decreased intestinal signalling for fats was described in mice lacking gut microbiota.37 Plasma levels of the energy homeostasis hormones, ghrelin and PYY 3-36, are associated with left ventricular mass indices. These associations indicate a possible interaction between gut peptides and the cardiovascular system in hypertension and obesity.38
The gut microbiota affects different tissues, adipose deposits, hormonal, pharmacological, nutritional and life style factors, and can also affect adiponectin clearance and release from T-cadherin-associated tissue reservoirs.39 Altered adiponectin levels are present in patients with heart failure. Inflammation downregulates adiponectin production and its levels are reduced in obesity and its associated comorbidities.39 A positive association between inflammation and adiponectin has been reported in inflammatory disorders, in contrast with the negative correlation typical of metabolic diseases.
The interplay of the gut microbiome with bile acid metabolites affects the pathogenesis of heart disorders
Bile acids are associated with signalling. Gut microbial depletion affects the bile acid submetabolome of several organs including the heart in rats.40 Unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in the heart. In contrast, taurine-conjugated bile acids (taurocholic acid and tauro-beta-muricholic acid) dominate the cardiac bile acid profile in germ-free animals. These communication networks are affected by microbial activities noted by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid cometabolite patterns in the heart suggests a signalling role for these compounds and highlights the extent of gut microbiome effects on these pathways.40