Discussion
This systematic review and meta-analysis aimed to evaluate the efficacy, safety and costs of exercise-based CR in TAVI or SAVR patients. In addition to RCTs, we also included non-RCTs to allow us evaluate the safety of the intervention. Our results showed probable improvement in exercise capacity in favour of the exercise-based CR compared with no exercise across the studies. However, there was insufficient evidence to comment on the impact of exercise-based CR on HRQoL, mortality, hospitalisations, functional capacity, return to work or costs. There was also not enough evidence to allow us separate out the effects of TAVI only or SAVR only. Separating these patients into the separate groups would be useful as SAVR involves general anaesthesia and thoracotomy while TAVI is percutaneous and only uses local anaesthesia. The different procedures might differ significantly in their short-term impact on patients. Post-SAVR patients might therefore respond differently to exercise-based CR, compared with post-TAVI patients. Not separating and analysing patients as distinct groups might therefore be a limitation to this study.
Our findings are consistent with the Cochrane systematic review by Sibilitz et al, who also evaluated the effects of exercise-based CR on exercise capacity in 148 patients (two studies) following heart valve surgery (RE RCT: SMD −0.47, 95% CI −0.81 to −0.13, in favour of exercise).1 Sibilitz et al also found that this positive effect of CR did not reduce with time, as a statistically significant effect estimate was still seen at the longest follow-up of 12 months (ie, RE RCT: SMD −0.50, 95% CI −0.85 to −0.14, in favour of exercise).1 Pressler et al recently reassessed 17 patients at a mean of 24 months from baseline and found no preserved long-term improvements in VO2 max between both groups.7 However, they found that exercise-based CR significantly improved submaximal exercise capacity, which is possibly a better marker of aerobic efficiency and therefore more important in facilitating activities of daily living.7 Our 6MWT findings contrasts with the review by Ribeiro et al, who found that CR led to a statistically significant improvement in the 6MWT of 862 patients (five studies) after TAVI or SAVR (RE: MD 0.69, 95% CI 0.47 to 0.91).6 Although Ribeiro et al used a larger number of studies and participants, their findings are limited as they failed to use non-CR controls to assess the comparative effect of CR on the 6MWT. The initial clinical benefits of exercise-based CR declines with a reduction in adherence to regular exercise.7 Therefore, ongoing exercise interventions are required for patients following TAVI or SAVR to maintain the initial improvements in the long term.7
Study strengths and limitations
Although this review adhered to the published protocol and to Cochrane guidelines, our study has some limitations.
First, the major limitation was the limited evidence base: the number of included RCTs and non RCTs was small with a lack of consistent reporting of outcomes across studies. Second, although all studies were based on aerobic exercise training, there was considerable variation in the nature of exercise-based rehabilitation programmes across studies. Also, there were some differences in the populations (some studies looked at TAVI only, SAVR only and mixed populations). The comparator of all the studies was no structured exercise, but in the Jairath study, standard care might have included receiving guidelines for activity after discharge. Also, no study fully detailed what usual care was, and it is possible that this might differ between studies. These factors are likely to have contributed to the statistical heterogeneity seen in the review. Third, although sensitivity analysis was carried out where statistical heterogeneity could not be determined by both I2 and the χ2 p value, the review did not consider sensitivity analysis for best or worse case scenarios, with regards to adverse events.1 This could give a guide to the potential impact on our results of not including participants with events due to poor description of drop outs. Fourth, the certainty of evidence of the included studies for the outcomes measured ranged from very low to high. This is largely influenced by risk of bias assessment and sample size. Overall, the sample sizes for most studies were low and the reporting bias in the studies made risk of bias assessment and therefore its impacts on our results very difficult. In spite of these limitations, this review included up-to-date studies, and a meta-analysis was also carried out where necessary, increasing its robustness.
Implications to current practice and future research
While in Europe and the USA, patients following myocardial infarction and revascularisation and with heart failure can be offered CR; currently, such a policy is generally not the case for patients following open aortic valve surgery and TAVI.29 To inform future practice and policy, further evidence on the impact of CR following valve surgery is needed. Future studies of exercise-based CR post open aortic valve surgery or TAVI should aim to measure outcomes and costs that are relevant to the patients, clinicians and the policy makers. The studies should also aim to minimise bias and fully report all processes carried out. This would allow a more robust systematic review to be conducted, which would help inform recommendations for CR in TAVI and SAVR patients and therefore improve current practice.