Discussion
This study aimed to identify predictors of bleeding in a large real-world population of patients with AF treated with NOACs. We identified 10 independent predictors of bleeding and derived a bleeding risk score which showed a good discriminative ability (C-statistic 0.68 (95% CI 0.66 to 0.70)). Risk prediction scores that involve many predictor variables are often difficult to remember and require detailed knowledge of the patient’s medical history and laboratory parameters. To provide the clinician with a tool that is easily remembered and can be used bedside, we derived a three-variable simplified version of the score that was given the acronym ‘ABH-score’. This simplified score showed comparable predictive ability to previously published scores (C-statistic 0.66 (0.65 to 0.67)).
A recently published Danish study investigated the predictive abilities of the ATRIA, ORBIT and HAS-BLED scores in a very similar cohort of Danish patients with AF treated with NOACs.20 They found C-statistics for ATRIA of 0.59 (95% CI 0.57 to 0.60), HAS-BLED 0.58 (95% CI 0.57 to 0.59) and ORBIT 0.61 (95% CI 0.59 to 0.62). Although they investigated major bleeding only, the C-statistics were modest and in line with our estimates for the three scores based on our cohort.
The HAS-BLED score was derived from the EuroHeart survey AF population on vitamin K antagonist (VKA)8 and has subsequently been validated in patient cohorts taking OAC (VKA and Idraparinux).21 The ATRIA bleeding score was derived from the ATRIA community cohort of VKA users and later validated in the ROCKET-AF trial population.10 The ORBIT score was derived from the ORBIT registry composed mostly of VKA users.9 Despite being validated in patients using NOACs, and also in real-world populations, none of the existing risk scores were initially derived from real-world population cohorts.
Unlike stroke-specific risk scores, there have been no randomised trials that have proven an overall benefit of withholding OAC from patients on the basis of a high bleeding risk score. Although the risk of bleeding is dynamic and repeated bleeding risk assessments have been shown to increase accuracy of risk prediction, there is no bleeding risk threshold above which the beneficial effect of anticoagulation is offset by the risk of serious bleeding.22 Large observational data have shown a clear net clinical benefit from OAC despite very high bleeding risks.23 Also, cessation of OAC leads to increased risk of stroke, cardiovascular events and mortality. Simultaneously, studies have shown that 30%–60% of American patients with AF do not receive anticoagulation when indicated, probably mainly due to fear of bleeding, and that elevated bleeding risk often leads to discontinuation of OAC.24 25 To increase the likelihood of physicians prescribing anticoagulants for patients of AF, it is of utmost importance that they are familiar with the properties of NOACs and that their judgement of risks and benefits are based on solid evidence.
The two risk scores we present in this study seem to perform comparably. The importance of our full score lies in the presentation of distinct risk factors for patients with AF on NOACs. Several of the risk factors are potentially modifiable, such as hypertension, heart failure, CKD and COPD. It is logical to assume that modification of these may reduce the risk of bleeding. Physician awareness of these treatable chronic illnesses is thus especially important. The simplified version of the score has no modifiable risk factors; instead it consists of unambiguous risk factors without any grading or degree of severity, thereby leaving no room for misinterpretation. Also, it can be assessed without need for blood tests or imaging and still has a comparable discriminative ability to the alternative scores. In the simplified ABH-score, the variable ‘non-bleeding related hospitalisation’ serves as a surrogate marker of disease burden, emphasising the importance of considering the patient’s comorbidities as a whole. In general, a high bleeding risk score should not deter the clinician from prescribing OAC, but rather prompt a careful evaluation of each patient’s individual set of risk factors, with subsequent modification whenever possible.26
Concomitant use of antiplatelet drugs, but not non-steroidal anti-inflammatory drugs (NSAIDs), was associated with increased risk of bleeding in the univariate analysis. However, use of antiplatelet drugs was not included in our scores (online supplementary table S3), since it did not achieve statistical significance in the multivariate analysis. Nonetheless, other studies have shown that such a combination of drugs increases the risk of bleeding. Discontinuation of antiplatelet and avoidance of concomitant use of NSAIDs are recommended in all patients treated with NOACs, if these drugs are not strictly indicated. In general, use of risk scores does not imply that well known risk factors not being included in the risk score should be disregarded. The simple risk score could be used as a practical and quick tool for risk estimation, but other risk factors should also be taken into consideration.
Strengths and limitations
The strength of our study is that it retrieved data from mandatory and nationwide registries in a public healthcare system that covers all residents. As a result, the dataset gave us a complete list of all hospital contacts and prescriptions dispensed nationwide for the entire study period. This complete coverage of data eliminates selection bias and recall bias that is an apparent problem using other databases based on selected hospitals, health insurance schemes, self-reported questionnaires or clinical trials where the patients are highly selected and subjected to thorough follow-up which may reduce the risk of bleeding. Our score may be more suitable to assess the risk of bleeding in patients in the routine practice. With the exception of apixaban being granted general reimbursement 6 months after rivaroxaban and dabigatran, the same conditions for OAC prescribing were valid nationwide and throughout the study period.
One limitation of the study was that we did not have access to information on laboratory tests such as thrombocyte and erythrocyte count, estimated glomerular filtration rate, liver enzymes or cardiac markers as well as other important characteristics such as smoking and body weight. One other caveat that influences the external validity of the results is that the AF diagnosis was retrieved from hospital level only, meaning that patients with AF who were solely managed in primary care were not included in the study. However, most of the patients with AF in Norway are referred to the hospital for evaluation and initiation of therapy.
Due to the registry-based nature of this study, bleeding endpoints were not adjudicated. Therefore, some bleeding episodes may have been overlooked. Likewise, bleeding tendencies may be identified earlier in patients enrolled in clinical trials, due do closer follow-up, accordingly, major or fatal bleedings that would have occurred in real life may not be seen in trial cohorts.
The study participants were largely white Europeans. This may limit the generalisability of the results. Due to the relatively small number of patients on each separate NOAC, we did not consider possible differences in bleeding risk factors between the different NOACs. Although all prescribed drugs were included in our data set, use of non-prescription drugs (eg, NSAIDs) would go undetected. Bleeding episodes or other significant comorbidities only revealed in the primary care setting would not be visible in our data set and may thus be under-represented. There is also a risk of misclassification related to coding errors of hospital admissions; however, for serious conditions like bleeding, this is unlikely. No formal validation studies of the AF diagnosis in NPR against health records have been conducted. We studied drug exposure at the level of pharmacy dispensation and have no information on patient’s actual NOAC intake. The full-scale and the simplified scores have so far only been internally validated. The scores’ discriminative abilities were assessed with Harrel’s C-statistic, a measure chosen on account of its widespread use and assumed physician familiarity, but will naturally be restricted by any and all inherent weaknesses of the C-statistic.