Discussion
The main findings in this study are reduction of LV length by age and increase of the LV external dimension with age. This results in a reduced ratio between length and external diameter by higher age. Thus, the L/D ratio is an index of age-related LV remodelling. At the same time, this index is independent of body size measured by BSA. Normal age-related and gender-related values are provided. Furthermore, the findings confirm previous studies showing that RWT is age dependent; we also show it to be a BSA-dependent measure.
Relation to other studies
The conventional data are in general in accordance with previous studies, although with somewhat wider ranges due to larger SDs. This will tend to move upper and lower normal limits. Compared to the normal values given by Kou et al2 and Lang et al,3 which are derived from 2D echo, the presented values are slightly higher. This is consistent with the overestimation statistically present in M-mode recordings. The presented associations of wall thickness and cavity dimensions with BSA and gender, as well as wall thickness, but not cavity dimensions or FS with age are in line with previous studies. Thus, the material is fairly representative.
Interestingly, all measures of LV size related to BSA are higher in women. It may reflect that BSA is an imperfect measure of lean body size.
Variability and normal ranges
Normal range is generally accepted as the range from 2.5 to 97.5 centiles or mean±2 SD, comprising 95% of the normal population. The total variability will be a result of biological and measurement variability. From the study by Thorstensen, the SDs (CoR/2) of cross-sectional measurements were 0.9 mm, 1.2 mm and 2.7 mm for IVSd, LVPWd and LVIDD, respectively. Comparing with the overall SDs given in table 2, this is between 50% and 75% of the total variability in the study. The mean error of 10% in wall thickness measurements, however, corresponds to ca. 1 mm, which is the lower limit for measurement accuracy. WLs show somewhat less-relative measurement variability as shown in table 3, with mean errors of 3%, but with CoR of 0.8–1.3 cm. The main issue here is mean LV wall length, and taking mean measures somewhat reduces the variability, and the mean wall lengths had a CoR of 0.8, or about 25% of the total variability. Interestingly, means and mean error remained very similar for the mean of two, four and six walls.
The variability of single measures has consequences for composite measures. LVEDD and RWT are composites of three measures, L/D of two. In general, this means that the relative error of measurements will be thrice and twice that of single measures. On the other hand, the biological variation will be expected to show substantial covariation, thus increasing the measurement variability part of the total. Still, in the present study, they remained below the total population variability, as shown by the significant relations to BSA and age.
LV length and external diameter
LV wall length varies between walls. The main differences were a significantly longer inferolateral wall and significantly shorter septum and anteroseptum. Differences between the other walls were small. This has an important corollary that global LV wall length should be averaged from more than one measure. However, the differences between the average of two (from four chamber), four (from two and four chamber) and six (from all three views) were negligible. LV length relates to heart size and thus to body size. The decreasing LV length by age seems to be a measure of age-dependent remodelling, which previously has received little attention. Thus, the present study confirms a decrease in at least one dimension of heart size with age, which is in accordance with the recent finding of a reduction of LV cavity volume by age.2 ,3 However, LV length is still body size dependent.
LV external diameter is not a ‘new’ measure, as it is easily inferred in any previous material from LVIDD and wall thickness. As most studies find increase in wall thickness and increasing or unchanged cavity diameter by larger body size,2 ,3 the increase in LVEDD with body size is well documented, although little commented. Giving the fact that LVEDD is the composite of cavity diameter and combined wall thickness, it is not surprising that this measure shows the highest correlation with body size.
The constant ratio between LV length and external dimension for body size is, to the best of our knowledge, not described previously. In this study, the L/D ratios were the same for all body sizes, although slightly higher in women, but the gender difference was small. Thus, it seems that normalisation for body size can be substituted by the diameter–length ratio.
Thus, the normal LV geometry in normal individuals seems to be fairly constant for any given age. This ratio differs from the sphericity index as it incorporates wall thickness in the dimensions. The age-related L/D ratio may be another measure of LV hypertrophy, without the need for normalisation for body size. As a corollary, the LV mass calculated from wall thickness and cavity diameter alone will overestimate LV mass increasingly with increasing age as LV length is reduced by higher age. A formula based on M-mode measurements should incorporate LV length in a more ellipsoidal model of the LV, but arguably, echocardiographic measurement of the LV mass should be carried out in either 2D or three-dimensional (3D) mode, taking the true shape into account. However, 2D measurements have limitations related to foreshortening, while 3D echocardiography has the limitation of lower resolution in time and space (especially in the basal part of the LV), which may lead to the overestimation of LV thickness, especially basally.
Relative wall thickness
Even small misalignments of the M-mode lines will lead to an increase in the estimated chamber diameter and wall thickness. This may result in an overestimation, due to the proportion of less than perfect measures. RWT, on the other hand, will be less influenced by geometric skewness, as all measures are affected approximately to the same degree. Measurements of the RWT were equal using the true sum of the thickness of the septum and posterior wall and by the previously described method using two times the posterior wall thickness.11
Most studies show that while wall thickness increases with age, cavity diameter is less affected. Thus, RWT has to increase with age, as shown by Ganau et al.8 As RWT is a composite measure, the SD was wider than for isolated wall and cavity measures, respectively, as discussed above. In the present study, the upper normal limit (mean+2 SD) for RWT was 0.49 for the whole population. Mean (SD) ranged from 0.33 (0.06) in the lowest age group, through 0.36 (0.06) in the middle, to 0.38 (0.07) in the upper age group. This means that age-specific upper normal limits would range from 0.45 to 0.52 (figure 4), taking the common accepted definition of normal range (mean±2 SD). As wall thickness and chamber diameter increase with BSA, RWT has been assumed to be independent of body size, but the present study shows that it is not. RWT also differs between genders, being higher in men than in women.
Figure 4The association of RWT with age. RWT, relative wall thickness.
Limitations
The main limitation is that LV wall thickness and diameter are measured by M-mode. This was a practical solution as simple measurements with good repeatability were preferred due to the large number of individuals in the study. By M-mode, the lines may be slightly misaligned, thus overestimating wall thickness and chamber diameter. This will have less influence on the RWT, as the ratio will remain more or less unchanged. However, the large size of the study population and the robust measures are the strengths of the study, giving age-specific and gender-specific values for a large range of measurements. The main findings in this study are not the normal values per se, but the variations with BSA, age and gender. Length measurements from 2D echocardiography are vulnerable to foreshortening, and most studies will have a percentage of foreshortened measures, thus introducing a systematic underestimation in the basic values. Using multiple planes will reduce this.
The study population is ethnically homogeneous, and thus, variations due to ethnical differences are not covered. The study is cross sectional, thus findings are related to cohorts, and not true observations of ageing. However, the normal values reflect the framework of the present population as it is.