Introduction
Research from more than 45 clinical trials has shown that cardiac rehabilitation (CR) is a clinically effective secondary prevention programme leading to a significant reduction in premature cardiac mortality (26%; 95% CI 13% to 37%), total mortality (13%; 95% CI 1% to 25%) and improved quality of life.1 ,2 CR is also a cost-effective therapy with an estimated cost per life year gained of less than £2000.3 National recommendations for CR and National Institute for Health and Care Excellence (NICE) guidelines state that programmes should be comprehensive including education, support with health behaviour change and exercise training and should be delivered by a multidisciplinary team (MDT).2 ,4
The National Audit of Cardiac Rehabilitation (NACR), which is funded by the British Heart Foundation, collects clinical data from programmes allowing it to monitor and report on the quality of CR services in the UK. As with other health services; the size, resources and the extent of patient throughput varies across CR programmes. The extent of this variability, demonstrated in the literature and through the UK national audit, could give rise to a potential volume–outcome relationship (VOR) in CR.5 ,6 With respect to volume expectations only the Scottish Intercollegiate Guidelines Network (SIGN 57) states a value for the delivery of MDT CR of 500 patients per year which is based on expert opinion rather than clinical outcome assessment.7
VOR have been investigated in other areas of cardiology and cardiac surgery identifying that large volume centres are associated with better outcomes.8 ,9 This has led to significant centralisation of cardiac surgery services with specific staffing requirements and resources being made available for large volume centres only.10 The source of the relationship is believed to relate to higher volume of patients resulting in institutional experience, selective referral and improved process of care at higher volume institutions.8
It is expected that this volume effect may be mirrored in CR; this is because the quality of care may improve with increased patient throughput. There is an underlying assumption that ‘practice makes perfect’ which should mean that high-volume CR leads to a positive improvement in outcomes.8 There is a caveat to this in that national guidance and recent trial data from the UK express concern about the quality of CR delivery in routine practice.4 ,5 ,10 ,11 There are national recommendations that CR is based on assessment and is delivered to a minimum standard by a MDT.4 ,10 This team should implement risk factor management and facilitate health-related lifestyle changes in an increasingly multimorbid patient population. If a VOR were to be identified, then perhaps this finding would prompt policy for increased CR centralisation.
There is little VOR-specific research in CR. The one UK study relates to exercise class size rather than total volume and concludes that smaller class sizes was associated with increased mortality.5 In the context of risk factor outcomes one study from a similar care approach to CR (eg, psychiatric care) found a detrimental effect of volume on outcome, with increased hospital readmission in larger centres (OR of 30 day readmission, 3.0; 95% CI 2.8 to 3.2).12
Current CR although effective, has been shown to have low uptake with over half of eligible patients not receiving the programme.10 A possible method of improvement is to increase accessibility; this could be done through increasing number of centres.13 Although this study is not looking directly at accessibility, an offshoot is that changes to the way CR is run, large volume centres or many small volume centres, will impact accessibility.
Our study aims to investigate the relationship between volume of patients seen per year, with an experimental hypothesis that a positive VOR exists in CR.