Discussion
In the context of a large increase in the number of procedures submitted annually for audit, the raw 30-day mortality rate for paediatric cardiac surgical episodes in the UK fell from 4.3% in 2000 to 2.6% in 2009/2010, with a downward trend over this period. The drop in 30-day mortality was seen across the lower three bands of risk, which accounted for 92.9% of surgical episodes, but not in the highest risk band. Interestingly, the UK paediatric cardiac surgery case mix has become more rather than less complex over a decade of improving outcomes as reflected by the increased prevalence of functionally univentricular hearts, high-risk diagnoses and low weight at operation (<2.5 kg). This trend suggests that rather than turning away higher risk patients during an era when outcomes have been monitored more closely, conversely, a greater proportion of more complex patients were taken on in later years.
There was evidence that definitive surgical repairs are being performed earlier in life than was previously the case, with a lower age at operation in the later era, for several procedures applicable to babies and small children: complete atrioventricular septal defect repair, VSD repair, tetralogy of Fallot repair, coarctation repair, subaortic stenosis repair and Rastelli procedure. This is in keeping with selected single centre reports, advocating the safety of earlier repair in complete atrioventricular septal defect13 and tetralogy of Fallot.14 Moreover, it is consistent with a decrease in the relative frequency of palliative arterial shunts in lieu of definitive repair and a younger age at operation among arterial shunt patients. Higher 30-day mortality among the residual smaller group of patients undergoing arterial shunt in the later era relates to greater complexity (mean multivariate risk increased in era 2 for shunt patients, data not shown) as has been observed in other published data.15
The increase in the relative frequency of the Norwood operation, arterial switch with VSD repair, PDA ligations (a procedure performed predominantly for premature babies) and bidirectional cavopulmonary shunt (also occurring at younger age), as shown in table 2, is consistent with a more proactive approach nationally to the treatment of small babies with more complex conditions, tying in with our finding of a greater proportion of operations at low weight. The Norwood operation fell into the highest risk band 4, and although the UK Norwood outcomes compare well with other Registry-based data,9 there was no improvement in band 4 outcomes over the period of review. We note that mean multivariate risk increased among risk band 4 over time (data not shown). Furthermore, we were unable to include comorbidity information in our study because of data quality issues: in the most recent data reported by the National Institute of Cardiovascular Outcomes Research (NICOR) for 2009/2012, the rate of comorbid conditions was the highest ever reported at 30%,16 and while this may represent improved capture of this element, there may also be a true increase in comorbidity over time, with such babies prevalent in risk band 4. A wider acceptance of very complex patients for surgical management may have mitigated the effects of improvements in care, which more obviously benefited other patient groups in terms of the reported improvements in outcome for lower risk patients.
The number of procedures performed per annum increased over the period of review, with the smallest proportionate increase in risk band 1 cases (see figure 2), which were relatively static in terms of annual case volume from 2003 onwards. A relatively small rise in the number of incident cases of CHD in the UK has been reported over the same era,17 therefore the increase in national case volume supports the hypothesis of a more proactive approach towards surgical treatment of CHD and greater likelihood of early survival among surgically treated patients who require serial operations over their life time.
Strengths and weaknesses of the study
The mandatory submission of data for national audit of paediatric cardiac surgery in the UK and the data quality assurance processes employed by NICOR to promote full and standardised reporting of surgical activity is a considerable strength for this study. That said, as for any study based on retrospective observational data, conclusions must be viewed in the context of limitations to data quality. As stated in the results, episodes with missing outcome (919, 2.4% of episodes in the original dataset) were removed. The distribution of missing outcome (table 1) was concentrated at the start and at the end of the period of review, which is explained by process issues in 2000–2002 and the harvest of the data before complete ascertainment of outcome could be performed for 2009/2010. Between the years 2003 and 2008, the level of missing outcome was 0% and 0.4%, and therefore unlikely to render inaccurate the reported national mortality rate between these years. As stated, due to the poor level of completeness of comorbidity data and changes in this aspect over time, we were unable to include this in the study. Given the role of NICOR in audit of centre-specific outcomes and the study objective of evaluating national trends, the research team did not seek permission to perform analyses of outcomes within individual centres.
Study data in context
Outcomes of improved mortality in paediatric cardiac surgery, attributed to surgical techniques and intensive care practices, have been reported previously from the USA.18 The North American paediatric cardiac surgery audit database ‘STS-CHSDB’ recently published the discharge mortality rate for the 85 participating centres between 2005 and 2009 at 4.1% (3309 of 81 062 surgery admissions).19 We note that discharge mortality is different from 30-day mortality since it contains longer stay patients, and therefore the two are not directly comparable. The European Association for Cardiothoracic Surgery (EACTS) database currently posts 16 578 procedures in 14 501 patients for 2009, with a 4.01% 30-day mortality, which is a reduction from 4.26% 30-day mortality for 2008.20 Although having wide coverage, submission of data is not mandatory and neither of these large multi-institutional databases is completely representative of national or regional outcomes. Furthermore, only a small proportion of centres submitting data to these registries are validated, whereas there are independent annual validation visits in UK centres.21
Across these studies, there are differences in how early postoperative outcomes are defined and attributed. Our study is based on 30-day status, which in comparison with discharge status has the advantage of being inured to differences in institutional discharge and referral protocols. However, with increased capability to prolong life in intensive care, survival to 30-days is arguably a less robust measure of successful early outcome than it once was. Also, it should be noted that the analysis we report is based on outcomes for 30-day surgical episodes and not at the level of each visit to theatre by a patient.
The history of paediatric cardiac surgery in the UK is such that the specialty is highly scrutinised and connected in the public mind to troubling past events.1 ,22 The results reported in this paper reflect the national early surgical outcomes over a period where the specialty has been subject to a far reaching review: the ‘Safe and sustainable review of paediatric cardiac surgery’.2 This process led to exploration of every aspect of paediatric cardiac care in each centre nationally, and while negative views on the safe and sustainable review process have been expressed, it may be the case that the detailed critique and suggestions for improvement by a panel of experts did contribute to improvements in quality both locally and nationally. The very low mortality rates at 30 days must shift our focus now towards measures of morbidity, longer term survival outcomes (such as survival to 90 days or 1 year) and functional outcomes, which, although of great importance to patients and their families, are less well delineated, and furthermore may provide evidence on the comparative long-term benefits of different surgical strategies and models of care. The patient groups where improvements in outcome have not been observed, including babies undergoing shunts and the most complex children in risk band 4, warrant further more detailed audit, in order to establish whether further lessons may be learned.