Discussion
This study demonstrates a marked discrepancy in recommended measures of LV size obtained by echocardiography in a large cohort of patients receiving contrast for clinical purposes. There is only modest correlation between LV diameter and LV indexed volume, and poor agreement in classifications of LV size; LV diameter, even when indexed, is frequently within the normal range even when the indexed volume is severely dilated (figure 3). Conversely, non-indexed LV volumes are more likely to be above the reference range than when indexed to BSA.
Figure 3Measures of left ventricular (LV) size obtained in a 36-year-old man, body surface area 2 m2. LV internal diameter in diastole measured in the normal range (5.6 cm); indexed volume was severely dilated (LV end-diastolic volume (LVEDV) 200 mL, LVEDV index (LVEDVi) 100 mL/m2).
LV size—diameter or volume?
Accurate assessment and classification of LV volumes is central to the practice of cardiology. Diastolic and systolic volumes determine ejection fraction, which remains the cornerstone measurement of LV systolic function.19 However, there are particular circumstances where LVEDV alone is an important diagnostic and prognostic measure. Ventricular dilation may be an early marker of disease in patients with dilated cardiomyopathy20 or undergoing follow-up for treatment with cardiotoxic therapy.21 Increasing LV cavity size portends worsening prognosis with adverse remodelling after myocardial infarction.22 Conversely a reduction in LV size is associated with improved outcome following cardiac resynchronisation therapy.23 The clinical importance of LV size (measured by end-diastolic diameter) is emphasised in guidelines for timing of surgery in patients with valvular heart disease.5 ,6
As such, the European Association of Echocardiography mandates reporting of LV dimensions in transthoracic echocardiography, with volumetric assessment advised by Simpson's biplane method when ejection fraction is calculated.16 The ASE recommendations list either LV dimensions or volumes as acceptable in a standard transthoracic report, with a descriptive comment regarding the classification of cavity size.17
Historically, measures of LV size and systolic function were obtained at echocardiography by M-mode from the parasternal long-axis window.24 With advances in ultrasound technology resulting in improved 2D images the benefits of increased temporal resolution with M-mode have become less important for this purpose, and given the potential inaccuracy of M-mode interrogation where the ventricle lies ‘off-axis’, LV diameter may be more reliably measured from standard 2D images.7 However, even when attention is paid to optimise settings, the technique may be susceptible to poor parasternal echocardiographic windows with reduced image quality leading to difficulty distinguishing endocardial borders.25 Furthermore, the technique retains the limitations of significant geometric assumption when extrapolated as a measure of true cavity size.
In the current era several imaging modalities are available for LV volume measurement, varying in accuracy, time, cost and radiation exposure. The use of CT and cardiac MRI has increased significantly in recent years for many reasons, including a strong body of evidence demonstrating their potential for accurate and reproducible evaluation of LV volumes and LVEF.26–32 Despite this increase in tomographic imaging, echocardiography remains the fastest and most accessible method. The availability of echocardiographic contrast allows for accurate assessment in the majority of patients even with poor echocardiographic windows.33 Previous studies have demonstrated that LV volumes obtained using Simpson's biplane calculation with contrast are more accurate than non-contrast images, with acceptable limits of agreement when compared with cardiac MRI.11 ,13–15 The technique requires increased study time for intravenous injection, additional imaging and offline tracing of endocardial borders. Nevertheless, routine contrast administration is usually feasible without significant disruption34 and should be considered where endocardial definition is suboptimal, or where accurate calculation of ventricular volumes or LVEF is required.35
Classifying LV size
Defining normal values for ventricular size is important for the standardisation of echocardiographic reporting, but is not a straightforward task. Normal and abnormal ranges depend on a number of factors including populations studied, methods used for imaging and the statistical approaches employed. Hence the ranges published in the ASE Guidelines for Chamber Quantification are ultimately determined by expert consensus, incorporating accumulated data from population distributions, and evidence regarding associated risk stratification.10
While the relation between LV diameter and volume is imperfect, the relative cut-offs for LV diameter and LV indexed volume may be a further significant factor in the discrepancies observed in classification according to each measure. A relatively high cut-off for normal LV diameter would explain in part why so many patients with a severely dilated indexed volume have a diameter in the normal range. However, it is important to recognise that the cut-off values used for ventricular volumes were obtained before the development of echocardiographic contrast.36 It has been demonstrated previously that volumes obtained using Simpson's biplane method with contrast are between 10 and 47 mL higher than with non-contrast images13–15 with the degree of discrepancy depending on the population assessed. This will increase the likelihood of having a dilated (indexed) volume when defined by currently recommended cut-off values, and might explain some of the discrepancy seen in the present study population. Indeed, with the increasing use of contrast to calculate LV volumes and LVEF, there is a need to re-establish normal and abnormal values obtained by this method. Recent advances and increased utilisation of three-dimensional echocardiography should also contribute to this field.
In this cohort, 37% of patients with dilated non-indexed volumes were classified as normal after accounting for BSA. This highlights the significance of indexing to BSA as well as the difficulty of ascribing corresponding reference ranges to indexed and non-indexed measures of LV size. In general, where volumes are used, indexing for BSA is standard practice.
While challenges remain in defining normal and abnormal ranges, the existence of large registries of patients undergoing echocardiography, combined with improved facility to obtain relevant outcome data should encourage continued efforts to refine the cut-off values for use in everyday practice.
Strengths and limitations
This study investigated measures obtained from a large population of patients undergoing clinically indicated echocardiography with contrast in a high-volume centre. It therefore represents a “real world” population and as such the results may be considered clinically applicable. Nevertheless there are some limitations which should be acknowledged. This is a retrospective analysis, with measures obtained by a variety of sonographers and reporting echocardiologists. However, image acquisition and reporting within the department are standardised as far as possible according to current ASE guidelines.10
Although normal ranges for indexed volumes were previously defined without contrast, data is lacking from this cohort to compare volumes obtained from corresponding non-contrast images. However, such analysis is not routinely performed in this institution. Likewise, data is not presented regarding measures of LV diameter with contrast; there is no good evidence to support its use for this purpose. By including only patients who were administered contrast, it is likely that the study population was preselected with poorer baseline apical image quality. Where contrast was administered for accurate LVEF calculation, a corresponding bias towards patients with LV dilation may have increased the frequency or degree of discrepancy between the different measures compared with the population undergoing echocardiography as a whole. However, it should be noted that 1571 patients (78%) had an LV diameter in the normal range. Furthermore, inclusion of patients with larger ventricular size allows a more robust assessment of the relationship between LV diameter and LV indexed volume in this group. Finally, the accuracy of LV volumes obtained in this study cannot be reliably assessed as there was no ‘gold standard’ for reference in this population. However, previous studies have shown good agreement of LV volumes measured by contrast echocardiography and MRI, and the primary aim of this study was to assess the consistency of classification by different measures obtained at the same echocardiographic investigation.