Anti-ischemic potential of drugs related to the renin-angiotensin system

J Cardiovasc Pharmacol. 2001 Apr:37 Suppl 1:S11-20. doi: 10.1097/00005344-200109011-00003.

Abstract

Actions mediated by the renin-angiotensin system may be inhibited at various levels: renin itself may be inhibited, angiotensin-I (A-1) conversion to angiotensin-II (A-II), or binding of A-II at the A-II type 1 (A-II1) receptor. The angiotensin-converting enzyme (ACE) inhibitors and the A-II1 receptor antagonists are now clinically established. Because ACE is a relatively unspecific peptidase which catalyses the breakdown of A-I, bradykinin and neuropeptides like substance P and neurotensin, the effects of ACE inhibitors go far beyond the prevention of A-II production. On the other hand, in certain tissues like vascular and cardiac tissue, A-II is produced by other enzymes, for instance chymase, and ACE inhibitors do not consistently prevent A-II production. The action of A-II1 receptor antagonists may also not be confined to prevention of binding of A-II at the A-II1 receptor, as by rebound more A-II may bind at the A-II type 2 (A-II2) receptor and thus mediate until now not well defined effects. Thus, anti-ischemic actions of these drugs may be related to multiple mechanisms. Inhibition of A-II effects at the A-II1 receptor may prevent systemic and coronary vasoconstriction and growth effects of A-II on various cell types. In addition, A-II may potentiate, by pre- and postsynaptic mechanisms, activation of the sympathetic nervous system. Prevention of breakdown of bradykinin, substance P and neurotensin may result in direct vasodilation or release of nitrous oxide from the endothelium. Thus, growth-inhibiting effects may also be mediated. All these mechanisms seem to direct to a reduction of cardiac load by vasodilation and to a limitation of cardiovascular cell growth. While the systemic circulating renin-angiotensin system is probably responsible for control of cardiac load, local systems seem to control cell growth. Systemic effects seem to depend on activation of the renin-angiotensin system which has been shown in various ischemic syndromes. Activation of various components of the renin-angiotensin system has been demonstrated in myocardial ischemia, acute myocardial infarction and coronary occlusion and reperfusion models as well as in chronic left ventricular dysfunction post-myocardial infarction. While animal models of stress-induced myocardial ischemia have revealed predominantly positive results, clinical studies, which mostly were small and not well controlled, were equivocal. Large clinical trials with ACE inhibitors in acute myocardial infarction showed small benefits over placebo. Hypotension seems to be a critical side-effect in this situation. Experimental models show protective effects of both ACE inhibitors and A-II1 receptor antagonists in the situation of ischemia and reperfusion. New data on large clinical trials in patients at risk of cardiovascular events but normal left ventricular function demonstrate clear benefits of an ACE inhibitor. Large clinical trials in patients with chronic left ventricular dysfunction post-myocardial infarction show reduction of ischemic events.

Publication types

  • Review

MeSH terms

  • Angiotensin-Converting Enzyme Inhibitors / pharmacology*
  • Angiotensin-Converting Enzyme Inhibitors / therapeutic use*
  • Animals
  • Clinical Trials as Topic / statistics & numerical data
  • Coronary Vessels / drug effects
  • Coronary Vessels / physiology
  • Humans
  • Myocardial Ischemia / drug therapy*
  • Myocardial Ischemia / physiopathology
  • Myocardial Ischemia / prevention & control
  • Renin-Angiotensin System / drug effects*
  • Renin-Angiotensin System / physiology

Substances

  • Angiotensin-Converting Enzyme Inhibitors