Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiological studies of CHD and the evolution of preventive cardiology

Key Points

  • Ecological and population-based longitudinal studies, globally or within countries, have established the role of risk factors and subclinical disease measures in the prediction of coronary heart disease (CHD) events

  • CHD risk assessment, using short-term or long-term risk prediction algorithms, can help to identify individuals who would most benefit from interventions to control risk factors

  • Evaluation and screening of novel risk factors or for subclinical atherosclerosis can also help to identify individuals at high risk of CHD

  • Prevention of CHD focuses on identifying and managing important risk factors at both the population and individual levels through efforts aimed at primordial, primary, and secondary prevention

  • Data from epidemiological studies have provided the hypotheses for subsequent clinical trials, which have documented the efficacy of risk factor interventions that are the basis of preventive cardiology

Abstract

Cardiovascular diseases (CVDs) cause nearly one-third of all deaths worldwide. Coronary heart disease (CHD) accounts for the greatest proportion of CVDs, and risk factors such as hypertension, cigarette smoking, diabetes mellitus or elevated glucose level, elevated cholesterol levels, and obesity or being overweight are the top six causes of death globally. Ecological and population-based longitudinal studies, conducted globally or within individual countries, have established the role of traditional and novel risk factors and measures of subclinical disease in the prediction of CHD. Risk assessment with short-term or long-term risk prediction algorithms can help to identify individuals who would benefit most from risk-factor interventions. Evaluation of novel risk factors and screening for subclinical atherosclerosis can also help to identify individuals at highest cardiovascular risk. Prevention of CHD focuses on identifying and managing risk factors at both the population and individual levels through primordial, primary, and secondary prevention. Epidemiological studies have provided the hypotheses for subsequent clinical trials that have documented the efficacy of risk-factor interventions, which are the basis of preventive cardiology. Future research efforts will determine the screening and intervention strategies that have the greatest effect on CHD prevention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proportions of cardiovascular deaths caused by ischaemic heart disease, cerebrovascular disease, inflammatory heart disease, rheumatic heart disease, hypertensive heart disease, and other cardiovascular diseases in 2011.
Figure 2: The global distribution of ischaemic heart disease burden, in DALYs, in 2011.
Figure 3: Association between HDL-cholesterol levels and CHD risk according to levels of total cholesterol.19
Figure 4: Estimated 10-year CHD risk in adults aged 55 years in the Framingham Heart Study26 according to levels of various risk factors.
Figure 5: Age-standardized ischaemic heart disease mortality in men aged 35–64 years (per 100,000 of the population) in relation to mean cholesterol levels at centres participating in the MONICA project.32
Figure 6: Annual CHD event rates (%) by coronary artery calcium score categories in patients with DM, MetS, or neither disease.
Figure 7: Expected shifts in the cholesterol distribution.
Figure 8: The incidence of CVD according to the number of ideal health behaviours and health factors adopted.

Similar content being viewed by others

References

  1. Mendis, S., Puska, P. & Norrving, B. (Eds) Global Atlas on Cardiovascular Disease Prevention and Control (WHO, 2011).

    Google Scholar 

  2. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    PubMed  Google Scholar 

  3. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Go, A. S. et al. Heart Disease and Stoke Statistics—2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014).

    PubMed  Google Scholar 

  5. Hirsch, A. (Translated by Creighton, C.) Handbook of Geographical and Historical Pathology (The New Sydenham Society, 1883).

    Google Scholar 

  6. Anitschkow, N. in Deuxième Conférence Internationale de Pathologie Géographique, Utrecht, 26–28 Juillet 1934 (ed. Askanazy, M.) 44–101 (Oosthoek, 1935).

    Google Scholar 

  7. Keys, A. et al. Coronary heart disease among Minnesota business and professional men followed fifteen years. Circulation 28, 381–395 (1963).

    CAS  PubMed  Google Scholar 

  8. Keys, A. Seven Countries: a Multivariate Analysis of Death and Coronary Heart Disease (Harvard University Press, 1980).

    Google Scholar 

  9. Keys, A. & White, P. D. (Eds) Cardiovascular Epidemiology (Paul B. Hoeber, Publishers, 1956).

    Google Scholar 

  10. Epstein, F. H. Cardiovascular disease epidemiology: a journal from the past into the future. Circulation 93, 1755–1764 (1996).

    CAS  PubMed  Google Scholar 

  11. Keys, A. Atherosclerosis: a problem in newer public health. J. Mt Sinai Hosp. N.Y. 20, 118–139 (1953).

    CAS  PubMed  Google Scholar 

  12. Wong, N. D. & Levy, D. Legacy of the Framingham Heart Study: rationale, design, initial findings and implications. Global Heart 8, 3–9 (2013).

    PubMed  Google Scholar 

  13. Dawber, T. R., Meadors, G. F. & Moore, F. E. Jr. Epidemiological approaches to heart disease: the Framingham Study. Am. J. Pub. Health Nations Health 41, 279–281 (1951).

    CAS  Google Scholar 

  14. Dawber, T. R., Moore, F. E. Jr & Mann, G. V. Coronary heart disease in the Framingham Study. Am. J. Pub. Health Nations Health 47, 4–24 (1957).

    CAS  Google Scholar 

  15. Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. & Stokes, J. 3rd. Factors of risk in development of coronary heart disease—six year follow-up experience: the Framingham Study. Ann. Intern. Med. 55, 33–50 (1961).

    CAS  PubMed  Google Scholar 

  16. Kannel, W. B., Castelli, W. P., Gordon, T. & McNamara, P. M. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham Study. Ann. Intern. Med. 74, 1–12 (1971).

    CAS  PubMed  Google Scholar 

  17. Doyle, J. T., Dawber, T. R., Kannel, W. B., Heslin, A. S. & Kahn, H. A. Cigarette smoking and coronary heart disease: combined experience of the Albany and Framingham studies. N. Engl. J. Med. 266, 796–801 (1962).

    CAS  PubMed  Google Scholar 

  18. Kagan, A., Gordon, T., Kannel, W. B. & Dawber, T. R. Proceedings of the Council for High Blood Pressure Research (American Heart Association, 1959).

    Google Scholar 

  19. Castelli, W. P. et al. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 256, 2835–2838 (1986).

    CAS  PubMed  Google Scholar 

  20. Kannel, W. B. & McGee, D. L. Diabetes and cardiovascular disease. The Framingham study. JAMA 241, 2035–2038 (1979).

    CAS  PubMed  Google Scholar 

  21. Preis, S. R. et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation 113, 2914–2918 (2006).

    Google Scholar 

  22. Levy, D. et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension 36, 477–483 (2000).

    CAS  PubMed  Google Scholar 

  23. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kannel, W. B., Wolf, P. A., Verter, J. & McNamara, P. M. Epidemiologic assessment of the role of blood pressure in stroke. The Framingham study. JAMA 214, 301–310 (1970).

    CAS  PubMed  Google Scholar 

  25. McKee, P. A., Castelli, W. P., McNamara, P. M. & Kannel, W. B. The Natural history of congestive heart failure: the Framingham study. N. Engl. J. Med. 285, 1441–1446 (1971).

    CAS  PubMed  Google Scholar 

  26. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    CAS  PubMed  Google Scholar 

  27. Kannel, W. B. Sixty years of preventive cardiology: a Framingham perspective. Clin. Cardiol. 34, 342–343 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. WHO MONICA Project Principal Investigators. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. J. Clin. Epidemiol. 41, 105–114 (1988).

  29. Tunstall-Pedoe, H. et al. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA Project populations. Lancet 353, 1547–1557 (1999).

    CAS  PubMed  Google Scholar 

  30. Kuulasmaa, K. et al. Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations. Lancet 355, 675–687 (2000).

    CAS  PubMed  Google Scholar 

  31. Tustall-Pedoe, H. et al. Estimation of contribution of changes in coronary care to improving survival, event rates, and coronary heart disease mortality across the WHO MONICA Project populations. Lancet 355, 688–700 (2000).

    Google Scholar 

  32. Evans, A. et al. Trends in coronary risk factors in the WHO MONICA Project. Int. J. Epidemiol. 30, S35–S40 (2001).

    PubMed  Google Scholar 

  33. Leupker, R. V. WHO MONICA Project: what have we learned and where to go from here? Public Health Reviews 33, 373–396 (2012).

    Google Scholar 

  34. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364, 937–952 (2004).

    PubMed  Google Scholar 

  35. Rosengren, A. et al. for the INTERHEART investigators. Association of psychosocial risk factors with risk of acute myocardial infarction in 11,119 cases and 13,648 controls from 52 countries) (the INTERHEART study): case–control study. Lancet 364, 953–962 (2004).

    PubMed  Google Scholar 

  36. Teo, K., Chow, C. K., Vaz, M., Rangarajan, S. & Yusuf, S. The Prospective Urban Rural Epidemiology (PURE) study: examining the impact of societal influences on chronic noncommunicable disease in low-, middle-, and high-income countries. Am. Heart J. 158, 1–7 (2009).

    PubMed  Google Scholar 

  37. Teo, K. et al. Prevalence of a healthy lifestyle among individuals with cardiovascular disease in high-, middle-, and low-income countries: the Prospective Urban Rural Epidemiology (PURE) study. JAMA 309, 1613–1621 (2013).

    CAS  PubMed  Google Scholar 

  38. Yusuf, S. et al. Prospective Urban Rural Epidemiology (PURE) Study Investigators. Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): a prospective epidemiological survey. Lancet 378, 1231–1243 (2011).

    PubMed  Google Scholar 

  39. Worth, R. M., Kato, H., Rhoads, G. G., Kagan, K. & Syme, S. L. Epidemiologic studies for coronary heart disease and stroke in Japanese men living in Japan, Hawaii, and California: mortality. Am. J. Epidemiol. 102, 481–490 (1975).

    CAS  PubMed  Google Scholar 

  40. Sekikawa, A. et al. A “natural experiment” in cardiovascular epidemiology in the early 21st century. Heart 89, 255–257 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rose, G. et al. Myocardial ischaemia, risk factors and death from coronary heart disease. Lancet 1, 105–109 (1977).

    CAS  PubMed  Google Scholar 

  42. Ebi-Kryston, K. L. Respiratory symptoms and pulmonary function as predictors of 10-year mortality from respiratory disease, cardiovascular disease, and all cause in the Whitehall Study. J. Clin. Epidemiol. 41, 251–260 (1988).

    CAS  PubMed  Google Scholar 

  43. Smith, G. D., Shipley, M. J., Marmot, M. G. & Rose, G. Plasma cholesterol concentration and mortality. The Whitehall Study. JAMA 267, 70–76 (1992).

    CAS  PubMed  Google Scholar 

  44. Marmot, M. G. et al. Health inequalities among British civil servants: the Whitehall II study. Lancet 337, 1387–1393 (1991).

    CAS  PubMed  Google Scholar 

  45. Kivimäki, M. et al. Justice at work and reduced risk of coronary heart disease among employees: the Whitehall II Study. Arch. Intern. Med. 165, 2245–2251 (2005).

    PubMed  Google Scholar 

  46. Bosma, H. et al. Low job control and risk of coronary heart disease in Whitehall II (prospective cohort) study. BMJ 314, 558–565 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Talmud, P. J. et al. Utility of genetic and non-genic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340, b4838 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Sigurdsson, E., Thorgeirsson, G., Sigvaldason, H. & Sigfusson, N. Prevalence of coronary heart disease in Icelandic men 1968–1986. The Reykjavik Study. Eur. Heart J. 14, 584–591 (1993).

    CAS  PubMed  Google Scholar 

  49. Sigurdsson, E. Thorgeirsson, G., Sigvaldason, H., & Sigfusson, N. Unrecognized myocardial infarction: epidemiology, clinical characteristics, and the prognostic role of angina pectoris. The Reykjavik Study. Ann. Intern. Med. 122, 96–102 (1995).

    CAS  PubMed  Google Scholar 

  50. Harris, T. B. et al. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am. J. Epidemiol. 165, 1076–1087 (2007).

    PubMed  Google Scholar 

  51. Vidal, J. S. et al. Coronary artery calcium, brain function and structure: the AGES-Reykjavik Study. Stroke 41, 891–897 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Olafsdottir, E. et al. Effects of statin medication on mortality risk associated with type 2 diabetes in older persons: the population-based AGES-Reykjavik Study. BMJ Open 1, e000132 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. Assmann, G. & Schulte, H. The Prospective Cardiovascular Münster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am. Heart J. 116, 1713–1724 (1988).

    CAS  PubMed  Google Scholar 

  54. Assmann, G. & Schulte, H. The Prospective Cardiovascular Münster Study: prevalence and prognostic significance of hyperlipidemia in men with systemic hypertension. Am. J. Cardiol. 59, 9G–17G (1987).

    CAS  PubMed  Google Scholar 

  55. Assmann, G., Cullen, P. & Schuklte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 105, 310–315 (2002).

    PubMed  Google Scholar 

  56. Hense, H. W. et al. Framingham risk function overestimates risk of coronary heart disease in men and women from Germany—results from the MONICA Augsburg and the PROCAM cohorts. Eur. Heart J. 24, 937–945 (2003).

    PubMed  Google Scholar 

  57. Friedman, G. D. et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J. Clin. Epidemiol. 41, 1105–1116 (1988).

    CAS  PubMed  Google Scholar 

  58. Gardin, J. M. et al. Echocardiographic design of a multicenter investigation of free-living elderly subjects: the Cardiovascular Health Study. J. Am. Soc. Echocardiogr. 5, 63–72 (1992).

    CAS  PubMed  Google Scholar 

  59. Carr, J. J. et al. Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of Multiethnic Study of Atherosclerosis (MESA) and Coronary Artery Risk Development in Young Adults (CARDIA) Study. Radiology 234, 35–43 (2005).

    PubMed  Google Scholar 

  60. Bild, D. E. et al. Prevalence and correlates of coronary calcification in black and white young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Arterioscler. Thromb. Vasc. Biol. 21, 852–857 (2001).

    CAS  PubMed  Google Scholar 

  61. Truesdale, K. P. et al. Changes in risk factors for cardiovascular disease by baseline weight status in young adults who maintain or gain weight over 15 years: the CARDIA study. Int. J. Obes. 30, 1397–1407 (2006).

    CAS  Google Scholar 

  62. Bibbins-Domingo, K. et al. Racial differences in incident heart failure among young adults. N. Engl. J. Med. 360, 1179–1190 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. The ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am. J. Epidemiol. 129, 687–702 (1989).

  64. Heiss, G. et al. Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am. J. Epidemiol. 134, 250–256 (1991).

    CAS  PubMed  Google Scholar 

  65. Nambi, V. et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk in Communities) study. J. Am. Coll. Cardiol. 55, 1600–1607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nambi, V. et al. The 9p21 genetic variant is additive to carotid intima media thickness and plaque in improving coronary heart disease risk≈prediction in white participants of the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 222, 135–137 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Folsom, A. R. et al. Community prevalence of ideal cardiovascular health by the American Heart Association definition and relation with cardiovascular disease incidence. J. Am. Coll. Cardiol. 57, 1690–1696 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Lee, E. T. et al. The Strong Heart Study. A study of cardiovascular disease in American Indians: design and methods. Am. J. Epidemiol. 132, 1141–1155 (1990).

    CAS  PubMed  Google Scholar 

  69. Lee, E. T. et al. Incidence of diabetes in American Indians of tree geographic areas: the Strong Heart Study. Diabetes Care 25, 49–54 (2002).

    PubMed  Google Scholar 

  70. Resnick, H. E. et al. Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic American Indians: the Strong Heart Study. Diabetes Care 26, 861–867 (2003).

    PubMed  Google Scholar 

  71. Fried, L. P. et al. The Cardiovascular Health Study: design and rationale. Ann. Epidemiol. 1, 263–276 (1991).

    CAS  PubMed  Google Scholar 

  72. Bild, D. E. et al. Age-related trends in cardiovascular morbidity and physical functioning in the elderly: the Cardiovascular Health Study. J. Am. Geriatr. Soc. 41, 1047–1056 (1993).

    CAS  PubMed  Google Scholar 

  73. Fried, L. P. et al. Risk factors for 5-year mortality in older adults: the Cardiovascular Health Study. JAMA 279, 585–592 (1998).

    CAS  PubMed  Google Scholar 

  74. Psaty, B. M. et al. Isolated systolic hypertension and subclinical cardiovascular disease in the elderly. Initial findings from the Cardiovascular Health Study. JAMA 268, 1287–1291 (1992).

    CAS  PubMed  Google Scholar 

  75. Taylor, H. A. Jr et al. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn. Dis. 15 (Suppl. 6), S6-4–S6-17 (2005).

    Google Scholar 

  76. Liu, J. et al. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson Heart Study. Diabetes Care 33, 1635–1639 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bidulescu, A. et al. Associations of adiponectin and leptin with incident coronary heart disease and ischemic stroke in African Americans: the Jackson Heart Study. Front. Public Health 1, 16 (2013).

    PubMed  PubMed Central  Google Scholar 

  78. Bild, D. E. et al. Multi-Ethnic Study of Atherosclerosis:objectives and design. Am. J. Epidemiol. 156, 871–881 (2002).

    PubMed  Google Scholar 

  79. Bluemke, D. A. et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 52, 2148–2155 (2008).

    PubMed  PubMed Central  Google Scholar 

  80. Bild, D. E. et al. Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 111, 1313–1320 (2005).

    PubMed  Google Scholar 

  81. Detrano, R. et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1336–1345 (2008).

    CAS  PubMed  Google Scholar 

  82. Polonsky, T. S. et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303, 1610–1616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Malik, S. et al. Impact of subclinical atherosclerosis on cardiovascular disease events in persons with metabolic syndrome and diabetes: the Multiethnic Study of Atherosclerosis. Diabetes Care 34, 2285–2290 (2011).

    PubMed  PubMed Central  Google Scholar 

  84. Yeboah, J. et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA 308, 788–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sorlie, P. D. et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 20, 629–641 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Daviglus, M. L. et al. Prevalence of major cardiovascular risk factors and cardiovascular diseases among Hispanic/Latino individuals of diverse backgrounds in the United States. JAMA 308, 1775–1784 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaptoge, S. et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    PubMed  Google Scholar 

  88. Kaptoge, S. et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N. Engl. J. Med. 367, 1310–1320 (2012).

    PubMed  Google Scholar 

  89. Di Angelantonio, E. et al. Lipid-related markers and cardiovascular disease prediction. JAMA 307, 2499–2506 (2012).

    CAS  PubMed  Google Scholar 

  90. Wormser, D. et al. Separate and combined associations of body mass index and abdominal adiposity with cardiovascular disease: a collaborative analysis of 58 prospective studies. Lancet 377, 1085–1095 (2011).

    PubMed  Google Scholar 

  91. Seshasai, S. R. et al. Diabetes mellitus, fasting glucose and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

    CAS  Google Scholar 

  92. Palomaki, G. E., Melillo, S. & Bradley, L. A. Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA 303, 648–656 (2010).

    CAS  PubMed  Google Scholar 

  93. Levy, D. et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet. 8 (Suppl. 1), S3 (2007).

    PubMed  PubMed Central  Google Scholar 

  94. Lieb, W. et al. Genetic predisposition to higher blood pressure increases coronary artery disease risk. Hypertension 61, 995–1001 (2013).

    CAS  PubMed  Google Scholar 

  95. Sarwar, N. et al. Interleukihn-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

    PubMed  Google Scholar 

  96. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

    CAS  PubMed  Google Scholar 

  98. Mihaylova, B. et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

    CAS  PubMed  Google Scholar 

  99. Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2013.11.002.

  100. Lewington, S., Clarke, R., Qizilbash, N., Peto, R. & Collins, R. Age-specific relevant of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903 (2002).

    PubMed  Google Scholar 

  101. Turnbull, F. for the Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood pressure lowering regimens on major cardiovascular events: results from prospective-designed overviews of randomized trials. Lancet 362, 1527–1535 (2003).

    CAS  PubMed  Google Scholar 

  102. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324, 71–86 (2002).

  103. Baigent, C. et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomized trials. Lancet 373, 1849–1860 (2009).

    PubMed  Google Scholar 

  104. Califf, R. M., Armstrong, P. W., Carver, J. R., D'Agostino, R. B. & Strauss, W. E. 27th Bethesda Conference: matching the intensity of risk factor management with the hazard for coronary disease events. Task force 5. Stratification of patients into high, medium and low risk subgroups for purposes of risk factor management. J. Am. Coll. Cardiol. 27, 1007–1019 (1996).

    CAS  PubMed  Google Scholar 

  105. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  106. Greenland, P. et al. 2010 ACCF/AHA Guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 56, 50–103 (2010).

    Google Scholar 

  107. Kannel, W. B., McGee, D. & Gordon, T. A general cardiovascular risk profile: the Framingham Study. Am. J. Cardiol. 38, 46–51 (1976).

    CAS  PubMed  Google Scholar 

  108. D'Agostino, R. B. Sr et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117, 743–753 (2008).

    PubMed  Google Scholar 

  109. The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). Eur. J. Prev. Cardiol. 19, 585–667 (2012).

  110. Halcox, J. P. et al. Reclassification of European patients' cardiovascular risk using the updated Systematic Coronary Risk Evaluation algorithm. Eur. J. Prev. Cardiol. http://dx.doi.org/10.1177/2047487313507680.

  111. Pencina, M. J., D'Agostino, R. B. Sr, Larson, M. G., Massaro, J. M. & Vasan, R. S. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation 119, 3078–3084 (2009).

    PubMed  PubMed Central  Google Scholar 

  112. Lloyd-Jones, D. M., Larson, M. G., Beiser, A. & Levy, D. Lifetime risk of developing coronary heart disease. Lancet 353, 89–92 (1999).

    CAS  PubMed  Google Scholar 

  113. Berry, J. D. et al. Lifetime risks of cardiovascular disease. N. Engl. J. Med. 366, 321–329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Goff, D. C. Jr et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2013.11.005.

  115. Rosendorff, C. et al. Treatment of hypertension in the prevention and management of ischemic heart disease: a scientific statement from the American Heart Association Council for High Blood Pressure Research and the Councils on Clinical Cardiology and Epidemiology and Prevention. Circulation 115, 2761–2788 (2007).

    PubMed  Google Scholar 

  116. Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart Lung and Blood Institute Scientific Statement. Circulation 112, 2735–2752 (2005).

    PubMed  Google Scholar 

  117. Epstein, F. H. Coronary heart disease epidemiology revisited. Clinical and community aspects. Circulation 48, 185–194 (1973).

    CAS  PubMed  Google Scholar 

  118. Pearson, T. A. Public policy approaches to the prevention of heart disease and stroke. Circulation 124, 2560–2571 (2011).

    PubMed  Google Scholar 

  119. Pearson, T. A. et al. American Heart Association Council on Epidemiology and Prevention. American Heart Association guide for improving cardiovascular health at the community level, 2013 update: a scientific statement for public health practitioners, healthcare providers, and health policy makers. Circulation 127, 1730–1753 (2013).

    PubMed  Google Scholar 

  120. Hartley, L. et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database of Systematic Reviews 2013, Issue 6. Art. No.: CD009874. http://dx.doi.org/10.1002/14651858.CD009874.pub2.

  121. Rees, K. et al. 'Mediterranean' dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews 2013, Issue 8. Art. No.: CD009825. http://dx.doi.org/10.1002/14651858.CD009825.pub2.

  122. Li, J. & Siegrist, J. Physical activity and risk of cardiovascular disease—a meta-analysis of prospective cohort studies. Int. J. Environ. Res. Public Health 9, 391–407 (2012).

    PubMed  PubMed Central  Google Scholar 

  123. Smith, S. C. Jr et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. J. Am. Coll. Cardiol. 58, 2432–2446 (2011).

    PubMed  Google Scholar 

  124. Smith, S. C. Jr et al. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J. Am. Coll. Cardiol. 60, 2343–2348 (2012).

    PubMed  Google Scholar 

  125. Pocock, S. J., Shaper, A. G., Cook, D. G., Phillips, A. N. & Walker, M. Social class differences in ischaemic heart disease in British men. Lancet 2, 197–201 (1987).

    CAS  PubMed  Google Scholar 

  126. Hjermann, I., Leren, P., Norman, N., Helgeland, A. & Holme, I. Serum insulin response to oral glucose load during a dietary intervention trial in healthy coronary high risk men: the Oslo study. Scand. J. Clin. Lab. Invest. 40, 89–94 (1980).

    CAS  PubMed  Google Scholar 

  127. Knutsen, S. F. & Knutsen, R. The Tromsø Heart Study: family approach to interventionon CHD. Feasibility of risk factor reduction in high-risk persons—project description. Scand. J. Soc. Med. 17, 109–119 (1989).

    CAS  PubMed  Google Scholar 

  128. Carlson, L. A. & Lindstedt, S. The Stockholm prospective study. 1. The initial values for plasma lipids. Acta Med. Scand. Suppl. 493, 1–135 (1968).

    CAS  PubMed  Google Scholar 

  129. Rosenman, R. H. et al. Coronary heart disease in the Western collaborative group study. A follow-up experience of two years. JAMA 195, 86–92 (1966).

    CAS  PubMed  Google Scholar 

  130. Barrett-Connor, E. & Wingard, D. L. Sex differential in ischemic heart disease mortality in diabetics: a prospective population-based study. Am. J. Epidemiol. 118, 489–496 (1983).

    CAS  PubMed  Google Scholar 

  131. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. NHANES I Epidemiologic Followup Study (NHEFS) [online], http://www.cdc.gov/nchs/nhanes/nhefs/nhefs.htm.

  132. Colditz, G. A., Manson, J. E. & Hankinson, S. E. The Nurses' Health Study: 20-year contribution to the understanding of health among women. J. Womens Health 6, 49–62 (1997).

    CAS  PubMed  Google Scholar 

  133. Hennekens, C. H. & Eberlein, K. A randomized trial of aspirin and beta-carotene among US physicians. Prev. Med. 14, 165–168 (1985).

    CAS  PubMed  Google Scholar 

  134. Feinleib, M. et al. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am. J. Epidemiol. 106, 284–285 (1977).

    CAS  PubMed  Google Scholar 

  135. The Women's Health Initiative Study Group. Design of the Women's Health Initiative clinical trial and observational study. Control. Clin. Trials 19, 61–109 (1998).

  136. Huang, Z. et al. A north-south comparison of blood pressure and factors related to blood pressure in the People's Republic of China: a report from the PRC–USA Collaborative Study of Cardiovascular Epidemiology. J. Hypertens. 12, 1103–1112 (1994).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Wong.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, N. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol 11, 276–289 (2014). https://doi.org/10.1038/nrcardio.2014.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing