Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myofibroblast-mediated mechanisms of pathological remodelling of the heart

Abstract

The syncytium of cardiomyocytes in the heart is tethered within a matrix composed principally of type I fibrillar collagen. The matrix has diverse mechanical functions that ensure the optimal contractile efficiency of this muscular pump. In the diseased heart, cardiomyocytes are lost to necrotic cell death, and phenotypically transformed fibroblast-like cells—termed 'myofibroblasts'—are activated to initiate a 'reparative' fibrosis. The structural integrity of the myocardium is preserved by this scar tissue, although at the expense of its remodelled architecture, which has increased tissue stiffness and propensity to arrhythmias. A persisting population of activated myofibroblasts turns this fibrous tissue into a living 'secretome' that generates angiotensin II and its type 1 receptor, and fibrogenic growth factors (such as transforming growth factor-β), all of which collectively act as a signal–transducer–effector signalling pathway to type I collagen synthesis and, therefore, fibrosis. Persistent myofibroblasts, and the resultant fibrous tissue they produce, cause progressive adverse myocardial remodelling, a pathological hallmark of the failing heart irrespective of its etiologic origin. Herein, we review relevant cellular, subcellular, and molecular mechanisms integral to cardiac fibrosis and consequent remodelling of atria and ventricles with a heterogeneity in cardiomyocyte size. Signalling pathways that antagonize collagen fibrillogenesis provide novel strategies for cardioprotection.

Key Points

  • The muscular parenchyma of the heart, a syncytium of cardiomyocytes, is tethered within a structural protein network primarily composed of type I fibrillar collagen

  • The matrix promotes transmission and coordination of forces generated within myofibres, prevents myofibre slippage while sustaining chamber geometry without deformation, and protects against myocardial rupture

  • When cardiomyocytes are lost to necrosis, fibroblast-like cells restore structural integrity of the myocardium and form a 'secretome' that exerts autocrine and paracrine actions to regulate collagen turnover

  • An adverse cell–cell interaction ensues between persistent myofibroblasts and cardiomyocytes, which negatively influences electrical behaviour of the myocardium, predisposing it to arrhythmias

  • Tendrils of myofibroblast-generated collagen can ensnare cardiomyocytes, resulting in reduced workload and, therefore, disuse atrophy of these cells

  • Key targets for downregulating matrix responses and, therefore, for cardioprotection lie in the myofibroblast secretome

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postmortem tissue revealing the structural remodelling of myocardium in hypertensive heart disease.
Figure 2: The fibrillar collagen matrix.
Figure 3: Cardiomyocyte necrosis and subsequent fibrosis in the diseased heart.
Figure 4: The 'secretome' at the site of healing after acute myocardial infarction.
Figure 5: Fibrous tissue is found at, and remote to, the site of injury 4 weeks after MI.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Weber, K. T. Cardiac interstitium in health and disease: the fibrillar collagen network. J. Am. Coll. Cardiol. 13, 1637–1652 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Laurent, G. J. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252, C1–C9 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Schmitt-Gräff, A., Desmoulière, A. & Gabbiani, G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch. 425, 3–24 (1994).

    Article  PubMed  Google Scholar 

  4. Gerling, I. C. et al. Aldosteronism: an immunostimulatory state precedes the proinflammatory/fibrogenic cardiac phenotype. Am. J. Physiol. Heart Circ. Physiol. 285, H813–H821 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ahokas, R. A. et al. Aldosteronism and peripheral blood mononuclear cell activation. A neuroendocrine-immune interface. Circ. Res. 93, e124–e135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrison, D. G., Cai, H., Landmesser, U. & Griendling, K. K. Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J. Renin Angiotensin Aldosterone Syst. 4, 51–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Harrison, D. G., Marvar, P. J. & Titze, J. M. Vascular inflammatory cells in hypertension. Front. Physiol. 3, 128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coen, M., Gabbiani, G. & Bochaton-Piallat, M. L. Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology. Arterioscler. Thromb. Vasc. Biol. 31, 2391–2396 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Rosker, C., Salvarani, N., Schmutz, S., Grand, T. & Rohr, S. Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of alpha-smooth muscle actin containing stress fibers. Circ. Res. 109, 1120–1131 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Yue, L., Xie, J. & Nattel, S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc. Res. 89, 744–753 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Jalil, J. E., Janicki, J. S., Pick, R., Abrahams, C. & Weber, K. T. Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Circ. Res. 65, 258–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Fidzian´ska, A., Bilin´ska, Z. T., Walczak, E., Witkowski, A. & Chojnowska, L. Autophagy in transition from hypertrophic cardiomyopathy to heart failure. J. Electron Microsc. (Tokyo) 59, 181–183 (2010).

    Article  CAS  Google Scholar 

  13. Shang, F. & Taylor, A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med. 51, 5–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez, J. E., Schisler, J. C., Patterson, C. & Willis, M. S. Seek and destroy: the ubiquitin—proteasome system in cardiac disease. Curr. Hypertens. Rep. 11, 396–405 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Cosper, P. F. & Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 71, 1710–1720 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Beltrami, C. A. et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89, 151–163 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Factor, S. M. et al. Pathologic fibrosis and matrix connective tissue in the subaortic myocardium of patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 17, 1343–1351 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Waller, T. A., Hiser, W. L., Capehart, J. E. & Roberts, W. C. Comparison of clinical and morphologic cardiac findings in patients having cardiac transplantation for ischemic cardiomyopathy, idiopathic dilated cardiomyopathy, and dilated hypertrophic cardiomyopathy. Am. J. Cardiol. 81, 884–894 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Schaper, J., Lorenz-Meyer, S. & Suzuki, K. The role of apoptosis in dilated cardiomyopathy. Herz 24, 219–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. de Leeuw, N. et al. Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl. Int. 14, 299–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yoshikane, H. et al. Collagen in dilated cardiomyopathy--scanning electron microscopic and immunohistochemical observations. Jpn Circ. J. 56, 899–910 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Marijianowski, M. M., Teeling, P., Mann, J. & Becker, A. E. Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J. Am. Coll. Cardiol. 25, 1263–1272 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Pearlman, E. S., Weber, K. T., Janicki, J. S., Pietra, G. G. & Fishman, A. P. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab. Invest. 46, 158–164 (1982).

    CAS  PubMed  Google Scholar 

  24. Huysman, J. A. N., Vliegen, H. W., Van der Laarse, A. & Eulderink, F. Changes in nonmyocyte tissue composition associated with pressure overload of hypertrophic human hearts. Pathol. Res. Pract. 184, 577–581 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Rossi, M. A. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J. Hypertens. 16, 1031–1041 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Lopez, B., Gonzalez, A., Querejeta, R., Larman, M. & Diez, J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J. Am. Coll. Cardiol. 48, 89–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Krayenbuehl, H. P. et al. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 79, 744–755 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Schwarz, F. et al. Myocardial structure and function in patients with aortic valve disease and their relation to postoperative results. Am. J. Cardiol. 41, 661–669 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Hein, S. et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984–991 (2003).

    Article  PubMed  Google Scholar 

  30. Brooks, W. W., Shen, S. S., Conrad, C. H., Goldstein, R. H. & Bing, O. H. Transition from compensated hypertrophy to systolic heart failure in the spontaneously hypertensive rat: Structure, function, and transcript analysis. Genomics 95, 84–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. O'Hanlon, R. et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56, 867–874 (2010).

    Article  PubMed  Google Scholar 

  32. Green, J. J., Berger, J. S., Kramer, C. M. & Salerno, M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc. Imaging 5, 370–377 (2012).

    Article  PubMed  Google Scholar 

  33. Weber, K. T. et al. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ. Res. 62, 757–765 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Chapman, D., Weber, K. T. & Eghbali, M. Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ. Res. 67, 787–794 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Borg, T. K., Sullivan, T. & Ivy, J. Functional arrangement of connective tissue in striated muscle with emphasis on cardiac muscle. Scanning Electron Microsc. 4, 1775–1784 (1982).

    Google Scholar 

  36. Robinson, T. F., Cohen-Gould, L. & Factor, S. M. Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab. Invest. 49, 482–498 (1983).

    CAS  PubMed  Google Scholar 

  37. Robinson, T. F., Factor, S. M. & Sonnenblick, E. H. The heart as a suction pump. Sci. Am. 254, 84–91 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Cooper, G. 4th. Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 291, H1003–H1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Hoshijima, M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol. 290, H1313–H1325 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Voelkel, T. & Linke, W. A. Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Arch. 462, 143–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Streeter, D. D., Spotnitz, H. M., Patel, D. P., Ross, J. & Sonnenblick, E. H. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24, 339–347 (1969).

    Article  PubMed  Google Scholar 

  42. Robinson, T. F., Geraci, M. A., Sonnenblick, E. H. & Factor, S. M. Coiled perimysial fibers of papillary muscle in rat heart: morphology, distribution, and changes in configuration. Circ. Res. 63, 577–592 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Robinson, T. F., Cohen-Gould, L., Factor, S. M., Eghbali, M. & Blumenfeld, O. O. Structure and function of connective tissue in cardiac muscle: collagen types I and III in endomysial struts and pericellular fibers. Scanning Microsc. 2, 1005–1015 (1988).

    CAS  PubMed  Google Scholar 

  44. Lerman, R. H. et al. Myocardial healing and repair after experimental infarction in the rabbit. Circ. Res. 53, 378–388 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Jugdutt, B. I. Left ventricular rupture threshold during the healing phase after myocardial infarction in the dog. Can. J. Physiol. Pharmacol. 65, 307–316 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Factor, S. M., Robinson, T. F., Dominitz, R. & Cho, S. H. Alterations of the myocardial skeletal framework in acute myocardial infarction with and without ventricular rupture. Am. J. Cardiovasc. Pathol. 1, 91–97 (1987).

    CAS  PubMed  Google Scholar 

  47. Spinale, F. G. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ. Res. 90, 520–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, M. J. et al. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J. Am. Coll. Cardiol. 10, 1322–1334 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Rushmer, R. F. & Thal, N. The mechanics of ventricular contraction; a cinefluorographic study. Circulation 4, 219–228 (1951).

    Article  CAS  PubMed  Google Scholar 

  50. Fleckenstein, A., Frey, M. & Fleckenstein-Grun, G. Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur. Heart J. 4, 43–50 (1983).

    Article  CAS  PubMed  Google Scholar 

  51. Borkowski, B. J., Cheema, Y., Shahbaz, A. U., Bhattacharya, S. K. & Weber, K. T. Cation dyshomeostasis and cardiomyocyte necrosis. The Fleckenstein hypothesis revisited. Eur. Heart J. 32, 1846–1853 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khan, M. U. et al. Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflügers Arch. 464, 123–131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garcia-Dorado, D., Ruiz-Meana, M., Inserte, J., Rodriguez-Sinovas, A. & Piper, H. M. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc. Res. 94, 168–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Palmieri, G. M., Nutting, D. F., Bhattacharya, S. K., Bertorini, T. E. & Williams, J. C. Parathyroid ablation in dystrophic hamsters. Effects on Ca content and histology of heart, diaphragm, and rectus femoris. J. Clin. Invest. 68, 646–654 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jung, C., Martins, A. S., Niggli, E. & Shirokova, N. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovasc. Res. 77, 766–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Cleutjens, J. P. M., Kandala, J. C., Guarda, E., Guntaka, R. V. & Weber, K. T. Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell. Cardiol. 27, 1281–1292 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Sun, Y., Zhang, J., Zhang, J. Q. & Weber, K. T. Renin expression at sites of repair in the infarcted rat heart. J. Mol. Cell. Cardiol. 33, 995–1003 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Sun, Y., Cleutjens, J. P. M., Diaz-Arias, A. A. & Weber, K. T. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc. Res. 28, 1423–1432 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Sun, Y. & Weber, K. T. Cells expressing angiotensin II receptors in fibrous tissue of rat heart. Cardiovasc. Res. 31, 518–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Sun, Y., Zhang, J. Q., Zhang, J. & Ramires, F. J. A. Angiotensin II, transforming growth factor-β1 and repair in the infarcted heart. J. Mol. Cell. Cardiol. 30, 1559–1569 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Horiguchi, M., Ota, M. & Rifkin, D. B. Matrix control of transforming growth factor-β function. J. Biochem. 152, 321–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Filip, D. A., Radu, A. & Simionescu, M. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ. Res. 59, 310–320 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Katwa, L. C. et al. Valvular interstitial cells express angiotensinogen, cathepsin D, and generate angiotensin peptides. Int. J. Biochem. Cell Biol. 28, 807–821 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Bondi, C. D. et al. NAD(P)H oxidase mediates TGF-β1-induced activation of kidney myofibroblasts. J. Am. Soc. Nephrol. 21, 93–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barker, T. H. et al. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J. Biol. Chem. 280, 36483–36493 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Cleutjens, J. P. M., Verluyten, M. J. A., Smits, J. F. M. & Daemen, M. J. A. P. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 147, 325–338 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chapman, D. & Eghbali, M. Expression of fibrillar types I and III and basement membrane collagen type IV genes in myocardium of tight skin mouse. Cardiovasc. Res. 24, 578–583 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Whittaker, P. Unravelling the mysteries of collagen and cicatrix after myocardial infarction. Cardiovasc. Res. 31, 19–27 (1996).

    Article  Google Scholar 

  70. Fomovsky, G. M., Rouillard, A. D. & Holmes, J. W. Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J. Mol. Cell. Cardiol. 52, 1083–1090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun, Y., Kiani, M. F., Postlethwaite, A. E. & Weber, K. T. Infarct scar as living tissue. Basic Res. Cardiol. 97, 343–347 (2002).

    Article  PubMed  Google Scholar 

  72. van den Borne, S. W. et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7, 30–37 (2010).

    Article  PubMed  Google Scholar 

  73. Sun, Y., Zhang, J. Q., Zhang, J. & Ramires, F. J. A. Angiotensin II, transforming growth factor-β1 and repair in the infarcted heart. J. Mol. Cell. Cardiol. 30, 1559–1569 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, Y. & Weber, K. T. Angiotensin-converting enzyme and wound healing in diverse tissues of the rat. J. Lab. Clin. Med. 127, 94–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Sun, Y., Ramires, F. J. A., Zhou, G., Ganjam, V. K. & Weber, K. T. Fibrous tissue and angiotensin II. J. Mol. Cell. Cardiol. 29, 2001–2012 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Katwa, L. C. et al. Pouch tissue and angiotensin peptide generation. J. Mol. Cell. Cardiol. 30, 1401–1413 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Sun, Y. et al. Tissue angiotensin II in the regulation of inflammatory and fibrogenic components of repair in the rat heart. J. Lab. Clin. Med. 143, 41–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Sun, Y. & Weber, K. T. Angiotensin II and aldosterone receptor binding in rat heart and kidney: response to chronic angiotensin II or aldosterone administration. J. Lab. Clin. Med. 122, 404–411 (1993).

    CAS  PubMed  Google Scholar 

  79. Katwa, L. C. et al. Cultured myofibroblasts generate angiotensin peptides de novo. J. Mol. Cell. Cardiol. 29, 1375–1386 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Campbell, S. E. & Katwa, L. C. Angiotensin II stimulated expression of transforming growth factor-beta 1 in cardiac fibroblasts and myofibroblasts. J. Mol. Cell. Cardiol. 29, 1947–1958 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Q. et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4, 4 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Arnott, J. A. et al. Molecular requirements for induction of CTGF expression by TGF-β1 in primary osteoblasts. Bone 42, 871–885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ye, H., Cai, P. C., Zhou, Q. & Ma, W. L. Transforming growth factor-β1 suppresses the up-regulation of matrix metalloproteinase-2 by lung fibroblasts in response to tumor necrosis factor-α. Wound Repair Regen. 19, 392–399 (2011).

    Article  PubMed  Google Scholar 

  85. Willems, I. E. M. G., Havenith, M. G., De Mey, J. G. R. & Daemen, M. J. A. P. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145, 868–875 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Follonier Castella, L., Gabbiani, G., McCulloch, C. A. & Hinz, B. Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp. Cell Res. 316, 2390–2401 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Cotran, R. S., Kumar, V. & Robbins, S. L. in Robbins Pathologic Basis of Disease (eds Cotran, R. S., Kumar, V. & Robbins, S. L.) 597–656 (W. B. Saunders, Philadelphia, 1989).

    Google Scholar 

  88. Choudhury, L. et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 40, 2156–2164 (2002).

    Article  PubMed  Google Scholar 

  89. Maron, B. J., Epstein, S. E. & Roberts, W. C. Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am. J. Cardiol. 43, 1086–1102 (1979).

    Article  CAS  PubMed  Google Scholar 

  90. Finsterer, J. & Stöllberger, C. The heart in human dystrophinopathies. Cardiology 99, 1–19 (2003).

    Article  PubMed  Google Scholar 

  91. Swynghedauw, B. Molecular Cardiology for the Cardiologist (Kluwer, Boston, 1995).

    Book  Google Scholar 

  92. Campbell, S. E., Rakusan, K. & Gerdes, A. M. Change in cardiac myocyte size distribution in aortic-constricted neonatal rats. Basic Res. Cardiol. 84, 247–258 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Pandya, K., Kim, H. S. & Smithies, O. Fibrosis, not cell size, delineates β-myosin heavy chain reexpression during cardiac hypertrophy and normal aging in vivo. Proc. Natl Acad. Sci. USA 103, 16864–16869 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. López, J. E. et al. β-myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circ. Res. 109, 629–638 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. López, B., Querejeta, R., González, A., Larman, M. & Díez, J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension 60, 677–683 (2012).

    Article  PubMed  CAS  Google Scholar 

  96. Diez, J., Lopez, B., Gonzalez, A. & Querejeta, R. Clinical aspects of hypertensive myocardial fibrosis. Curr. Opin. Cardiol. 16, 328–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Weber, K. T., Brilla, C. G. & Janicki, J. S. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc. Res. 27, 341–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Bing, O. H. L., Fanburg, B. L., Brooks, W. W. & Matsushita, S. The effect of the lathyrogen β-amino proprionitrile (BAPN) on the mechanical properties of experimentally hypertrophied rat cardiac muscle. Circ. Res. 43, 632–637 (1978).

    Article  CAS  PubMed  Google Scholar 

  99. Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4, 44–52 (2011).

    Article  PubMed  Google Scholar 

  100. Martos, R. et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115, 888–895 (2007).

    Article  PubMed  Google Scholar 

  101. Gabbiani, G., Ryan, G. B. & Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27, 549–550 (1971).

    Article  CAS  PubMed  Google Scholar 

  102. Lorell, B. H. Diastolic dysfunction in pressure-overload hypertrophy and its modification by angiotensin II: current concepts. Basic Res. Cardiol. 87 (Suppl. 2), 163–172 (1992).

    CAS  PubMed  Google Scholar 

  103. Friedrich, S. P. et al. Intracardiac angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis. Circulation 90, 2761–2771 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Karagueuzian, H. S. Targeting cardiac fibrosis: a new frontier in antiarrhythmic therapy? Am. J. Cardiovasc. Dis. 1, 101–109 (2011).

    PubMed  PubMed Central  Google Scholar 

  105. Hothi, S. S. et al. Epac activation, altered calcium homeostasis and ventricular arrhythmogenesis in the murine heart. Pflugers Arch. 457, 253–270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rohr, S. Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm 6, 848–856 (2009).

    Article  PubMed  Google Scholar 

  107. Polyakova, V., Miyagawa, S., Szalay, Z., Risteli, J. & Kostin, S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J. Cell. Mol. Med. 12, 189–208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kallergis, E. M. et al. Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: biochemical assessment of collagen type-I turnover. J. Am. Coll. Cardiol. 52, 211–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Weber, K. T., Janicki, J. S. & Fishman, A. P. Aerobic limit of the heart perfused at constant pressure. Am. J. Physiol. 238, H118–H125 (1980).

    CAS  PubMed  Google Scholar 

  110. Brilla, C. G., Janicki, J. S. & Weber, K. T. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83, 1771–1779 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Youn, H. J. et al. Relation between flow reserve capacity of penetrating intramyocardial coronary arteries and myocardial fibrosis in hypertension: study using transthoracic Doppler echocardiography. J. Am. Soc. Echocardiogr. 19, 373–378 (2006).

    Article  PubMed  Google Scholar 

  112. Warnes, C. A., Maron, B. J. & Roberts, W. C. Massive cardiac ventricular scarring in first-degree relatives with hypertrophic cardiomyopathy. Am. J. Cardiol. 54, 1377–1379 (1984).

    Article  CAS  PubMed  Google Scholar 

  113. Maron, B. J., Wolfson, J. K., Epstein, S. E. & Roberts, W. C. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 8, 545–557 (1986).

    Article  CAS  PubMed  Google Scholar 

  114. Olivotto, I. et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J. Am. Coll. Cardiol. 58, 839–48 (2011).

    Article  PubMed  Google Scholar 

  115. Weber, K. T., Jalil, J. E., Janicki, J. S. & Pick, R. Myocardial collagen remodeling in pressure overload hypertrophy: a case for interstitial heart disease. Am. J. Hypertens. 2, 931–940 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. Collier, P., Ledwidge, M. & McDonald, K. Diagnostics and therapeutic interventions in myocardial interstitial disease, a previously neglected pathology. QJM 105, 721–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Griffiths, E. J. Mitochondria and heart disease. Adv. Exp. Med. Biol. 942, 249–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Dai, D. F. et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J. Am. Coll. Cardiol. 58, 73–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shahbaz, A. U. et al. Mitochondria-targeted cardioprotection in aldosteronism. J. Cardiovasc. Pharmacol. 57, 37–43 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cheema, Y. et al. Mitochondriocentric pathway to cardiomyocyte necrosis in aldosteronism: cardioprotective responses to carvedilol and nebivolol. J. Cardiovasc. Pharmacol. 58, 80–86 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoshida, A. et al. H2 mediates cardioprotection via involvements of KATP channels and permeability transition pores of mitochondria in dogs. Cardiovasc. Drugs Ther. 26, 217–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Aurora, A. B. et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J. Clin. Invest. 122, 1222–1232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bauersachs, J. Regulation of myocardial fibrosis by MicroRNAs. J. Cardiovasc. Pharmacol. 56, 454–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Thum, T. & Lorenzen, J. M. Cardiac fibrosis revisited by microRNA therapeutics. Circulation 126, 800–802 (2012).

    Article  PubMed  Google Scholar 

  125. Gieling, R. G., Burt, A. D. & Mann, D. A. Fibrosis and cirrhosis reversibility - molecular mechanisms. Clin. Liver Dis. 12, 915–937 (2008).

    Article  PubMed  Google Scholar 

  126. Elsharkawy, A. M., Oakley, F. & Mann, D. A. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 10, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Muddu, A. K., Guha, I. N., Elsharkawy, A. M. & Mann, D. A. Resolving fibrosis in the diseased liver: translating the scientific promise to the clinic. Int. J. Biochem. Cell Biol. 39, 695–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Smits, J. F. M., van Krimpen, C., Schoemaker, R. G., Cleutjens, J. P. M. & Daemen, M. J. A. P. Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J. Cardiovasc. Pharmacol. 20, 772–778 (1992).

    CAS  PubMed  Google Scholar 

  129. Tsutsui, H. et al. Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Hypertens. Res. 30, 439–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Matsusaka, H. et al. Angiotensin II type 1 receptor blocker attenuates exacerbated left ventricular remodeling and failure in diabetes-associated myocardial infarction. J. Cardiovasc. Pharmacol. 48, 95–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Iwamoto, M. et al. Connective tissue growth factor induction in a pressure-overloaded heart ameliorated by the angiotensin II type 1 receptor blocker olmesartan. Hypertens. Res. 33, 1305–1311 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Hoch, N. E. et al. Regulation of T-cell function by endogenously produced angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R208–R216 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Touyz, R. M. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp. Physiol. 90, 449–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Fujiwara, Y. et al. Inhibition of experimental abdominal aortic aneurysm in a rat model by the angiotensin receptor blocker valsartan. Int. J. Mol. Med. 22, 703–708 (2008).

    CAS  PubMed  Google Scholar 

  135. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Moltzer, E. et al. Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: effect of angiotensin II type 1 (AT1) receptor blockade. PLoS ONE 6, e23411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aksu, S. et al. Over-expression of angiotensin-converting enzyme (CD 143) on leukemic blasts as a clue for the activated local bone marrow RAS in AML. Leuk. Lymphoma 47, 891–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Haznedaroglu, I. C. & Beyazit, Y. Pathobiological aspects of the local bone marrow renin-angiotensin system: a review. J. Renin Angiotensin. Aldosterone Syst. 11, 205–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Garcia, G. E. ANG II receptor antagonists as modulators of macrophages polarization. Am. J. Physiol. Renal Physiol. 298, F868–F869 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Rehman, A. et al. Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension 59, 291–299 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Keidar, S., Kaplan, M. & Gamliel-Lazarovich, A. ACE2 of the heart: from angiotensin I to angiotensin (1–7). Cardiovasc. Res. 73, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Zisman, L. S. et al. Increased angiotensin-(1–7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2. Circulation 108, 1707–1712 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Burrell, L. M. et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur. Heart J. 26, 369–375; discussion 322–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Takeda, Y. et al. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am. J. Hypertens. 20, 1119–1124 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Sukumaran, V. et al. Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1–7/mas receptor axis. Int. J. Biol. Sci. 7, 1077–1092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kassiri, Z. et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ. Heart Fail. 2, 446–455 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, Y. X. et al. ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Hum. Gene Ther. 21, 1545–1554 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Dong, B. et al. Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 59, 739–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Trask, A. J. et al. Inhibition of angiotensin-converting enzyme 2 exacerbates cardiac hypertrophy and fibrosis in Ren-2 hypertensive rats. Am. J. Hypertens. 23, 687–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, X., Hu, H. & Yin, J. Q. Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver Int. 26, 8–22 (2006).

    Article  PubMed  Google Scholar 

  151. Yang, F., Chung, A. C., Huang, X. R. & Lan, H. Y. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-β-dependent and -independent Smad pathways: the role of Smad3. Hypertension 54, 877–884 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Lan, H. Y. Transforming growth factor-β/Smad signalling in diabetic nephropathy. Clin. Exp. Pharmacol. Physiol. 39, 731–738 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Hinz, B. et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180, 1340–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hawinkels, L. J. & Ten Dijke, P. Exploring anti-TGF-β therapies in cancer and fibrosis. Growth Factors 29, 140–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Bauersachs, J. Regulation of myocardial fibrosis by MicroRNAs. J. Cardiovasc. Pharmacol. 56, 454–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Guntaka, R. V., Varma, B. R. & Weber, K. T. Triplex-forming oligonucleotides as modulators of gene expression. Int. J. Biochem. Cell Biol. 35, 22–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Koilan, S. et al. Prevention of liver fibrosis by triple helix-forming oligodeoxyribonucleotides targeted to the promoter region of type I collagen gene. Oligonucleotides 20, 231–237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brilla, C. G., Funck, R. C. & Rupp, H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102, 1388–1393 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Varo, N. et al. Chronic AT1 blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension 35, 1197–1202 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Díez, J. et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105, 2512–2517 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NIH grants R01-HL73043 and R01-HL90867 (K. T. Weber); R01-HL77668 and R01-HL96503 (Y. Sun). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

The authors are part of a multidisciplinary investigative team. K. T. Weber and S. K. Bhattacharya wrote the manuscript. All authors researched data for the article, substantially contributed to discussion of content, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Karl T. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, K., Sun, Y., Bhattacharya, S. et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10, 15–26 (2013). https://doi.org/10.1038/nrcardio.2012.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing