Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natriuretic peptides in heart failure: should therapy be guided by BNP levels?

A Correction to this article was published on 01 April 2010

This article has been updated

Abstract

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Testing for natriuretic peptide markers, such as B-type natriuretic peptide (BNP) or N-terminal proBNP (NT-proBNP), has emerged as an important tool for the diagnosis and risk stratification of patients with HF. However, questions remain regarding the potential role for natriuretic peptides to guide therapy in patients with HF. In this Review, we address the underlying assumptions and the existing evidence supporting a natriuretic-peptide-guided approach to the outpatient management of HF.

Key Points

  • Natriuretic peptides, including B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP), are useful for risk stratification in patients with heart failure

  • Several established heart failure therapies have been shown to significantly reduce the concentration of natriuretic peptides

  • Limited evidence exists that patients with higher concentrations of natriuretic peptides derive a greater benefit from established heart failure therapies than patients with lower concentrations of natriuretic peptides

  • More research is required before a natriuretic peptide-guided approach to the outpatient management of heart failure can be endorsed in all patients

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cumulative hospitalization-free survival following hospital discharge stratified by the change in NT-proBNP concentration during HF hospitalization.
Figure 2: The primary outcome of the pilot trial in Christchurch, New Zealand.
Figure 3: Treatment modifications in the STARS-BNP trial.
Figure 4: Clinical outcomes stratified by treatment arm and patient age in the TIME-CHF trial.

Similar content being viewed by others

Change history

References

  1. Bonow, R. O. et al. ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Heart Failure Clinical Performance Measures) endorsed by the Heart Failure Society of America. J. Am. Coll. Cardiol. 46, 1144–1178 (2005).

    Article  Google Scholar 

  2. Krantz, M. J. et al. Influence of hospital length of stay for heart failure on quality of care. Am. J. Cardiol. 102, 1693–1697 (2008).

    Article  Google Scholar 

  3. Albert, N. M. et al. Use of aldosterone antagonists in heart failure. JAMA 302, 1658–1665 (2009).

    Article  CAS  Google Scholar 

  4. Braunwald, E., Harrison, D. C. & Chidsey, C. A. The heart as an endocrine organ. Am. J. Med. 36, 1–4 (1964).

    Article  CAS  Google Scholar 

  5. Henry, J. P., Gauer, O. H. & Reeves, J. L. Evidence of the atrial location of receptors influencing urine flow. Circ. Res. 4, 85–90 (1956).

    Article  CAS  Google Scholar 

  6. Jamieson, J. D. & Palade, G. E. Specific granules in atrial muscle cells. J. Cell Biol. 23, 151–172 (1964).

    Article  CAS  Google Scholar 

  7. de Bold, A. J., Borenstein, H. B., Veress, A. T. & Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 28, 89–94 (1981).

    Article  CAS  Google Scholar 

  8. Sudoh, T., Kangawa, K., Minamino, N. & Matsuo, H. A new natriuretic peptide in porcine brain. Nature 332, 78–81 (1988).

    Article  CAS  Google Scholar 

  9. Richards, A. M. et al. Brain natriuretic factor: regional plasma concentrations and correlations with haemodynamic state in cardiac disease. Br. Heart J. 69, 414–417 (1993).

    Article  CAS  Google Scholar 

  10. Yasue, H. et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90, 195–203 (1994).

    Article  CAS  Google Scholar 

  11. Magga, J., Vuolteenaho, O., Tokola, H., Marttila, M. & Ruskoaho, H. B-type natriuretic peptide: a myocyte-specific marker for characterizing load-induced alterations in cardiac gene expression. Ann. Med. 30 (Suppl. 1), 39–45 (1998).

    CAS  PubMed  Google Scholar 

  12. Liang, F. et al. Evidence for functional heterogeneity of circulating B-type natriuretic peptide. J. Am. Coll. Cardiol. 49, 1071–1078 (2007).

    Article  CAS  Google Scholar 

  13. Tang, W. H. et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical utilization of cardiac biomarker testing in heart failure. Clin. Biochem. 41, 210–221 (2008).

    Article  CAS  Google Scholar 

  14. Pemberton, C. J., Johnson, M. L., Yandle, T. G. & Espiner, E. A. Deconvolution analysis of cardiac natriuretic peptides during acute volume overload. Hypertension 36, 355–359 (2000).

    Article  CAS  Google Scholar 

  15. Kroll, M. H., Twomey, P. J. & Srisawasdi, P. Using the single-compartment ratio model to calculate half-life, NT-proBNP as an example. Clin. Chim. Acta 380, 197–202 (2007).

    Article  CAS  Google Scholar 

  16. Redfield, M. M. et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J. Am. Coll. Cardiol. 40, 976–982 (2002).

    Article  CAS  Google Scholar 

  17. Wang, T. J. et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am. J. Cardiol. 90, 254–258 (2002).

    Article  CAS  Google Scholar 

  18. Wang, T. J. et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 109, 594–600 (2004).

    Article  CAS  Google Scholar 

  19. Anwaruddin, S. et al. Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J. Am. Coll. Cardiol. 47, 91–97 (2006).

    Article  CAS  Google Scholar 

  20. Takeishi, Y. et al. Linkage disequilibrium analyses of natriuretic peptide precursor B locus reveal risk haplotype conferring high plasma BNP levels. Biochem. Biophys. Res. Commun. 362, 480–484 (2007).

    Article  CAS  Google Scholar 

  21. Meirhaeghe, A. et al. Association between the T-381C polymorphism of the brain natriuretic peptide gene and risk of type 2 diabetes in human populations. Hum. Mol. Genet. 16, 1343–1350 (2007).

    Article  CAS  Google Scholar 

  22. Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41, 348–353 (2009).

    Article  CAS  Google Scholar 

  23. Tang, W. H. et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: Clinical utilization of cardiac biomarker testing in heart failure. Circulation 116, e99–e109 (2007).

    Article  CAS  Google Scholar 

  24. Doust, J. A., Pietrzak, E., Dobson, A. & Glasziou, P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ 330, 625 (2005).

    Article  CAS  Google Scholar 

  25. Anand, I. S. et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 107, 1278–1283 (2003).

    Article  CAS  Google Scholar 

  26. Bettencourt, P. et al. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation 110, 2168–2174 (2004).

    Article  CAS  Google Scholar 

  27. Logeart, D. et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 43, 635–641 (2004).

    Article  CAS  Google Scholar 

  28. Tamura, N. et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc. Natl. Acad. Sci. USA 97, 4239–4244 (2000).

    Article  CAS  Google Scholar 

  29. Oliver, P. M. et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc. Natl. Acad. Sci. USA. 94, 14730–14735 (1997).

    Article  CAS  Google Scholar 

  30. Motwani, J. G., McAlpine, H., Kennedy, N. & Struthers, A. D. Plasma brain natriuretic peptide as an indicator for angiotensin-converting-enzyme inhibition after myocardial infarction. Lancet 341, 1109–1113 (1993).

    Article  CAS  Google Scholar 

  31. Latini, R. et al. Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure: the Valsartan Heart Failure Trial (Val-HeFT). Circulation 106, 2454–2458 (2002).

    Article  CAS  Google Scholar 

  32. Tsutamoto, T. et al. Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J. Am. Coll. Cardiol. 37, 1228–1233 (2001).

    Article  CAS  Google Scholar 

  33. Cleland, J. G. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    Article  CAS  Google Scholar 

  34. Davis, M. E. et al. Introduction of metoprolol increases plasma B-type cardiac natriuretic peptides in mild, stable heart failure. Circulation 113, 977–985 (2006).

    Article  CAS  Google Scholar 

  35. Stanek, B. et al. Prognostic evaluation of neurohumoral plasma levels before and during beta-blocker therapy in advanced left ventricular dysfunction. J. Am. Coll. Cardiol. 38, 436–442 (2001).

    Article  CAS  Google Scholar 

  36. Richards, A. M. et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J. Am. Coll. Cardiol. 37, 1781–1787 (2001).

    Article  CAS  Google Scholar 

  37. Richards, A. M. et al. Neurohumoral prediction of benefit from carvedilol in ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. Circulation 99, 786–792 (1999).

    Article  CAS  Google Scholar 

  38. Hartmann, F. et al. Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure: a substudy of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) trial. Circulation 110, 1780–1786 (2004).

    Article  CAS  Google Scholar 

  39. Omland, T. et al. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial. J. Am. Coll. Cardiol. 50, 205–214 (2007).

    Article  CAS  Google Scholar 

  40. Cleland, J. G. et al. Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response a report from the CARE-HF (Cardiac Resynchronization in Heart Failure) Trial. J. Am. Coll. Cardiol. 52, 438–445 (2008).

    Article  Google Scholar 

  41. Troughton, R. W. et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355, 1126–1130 (2000).

    Article  CAS  Google Scholar 

  42. Jourdain, P. et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J. Am. Coll. Cardiol. 49, 1733–1739 (2007).

    Article  CAS  Google Scholar 

  43. Shah, M. R. et al. STARBRITE: a randomized pilot trial of BNP-guided therapy in patients with advanced heart failure [abstract 2554]. Circulation 114, II_528 (2006).

  44. Shah, M. R. et al. Testing new targets of therapy in advanced heart failure: the design and rationale of the Strategies for Tailoring Advanced Heart Failure Regimens in the Outpatient Setting: BRain NatrIuretic Peptide Versus the Clinical CongesTion ScorE (STARBRITE) trial. Am. Heart J. 150, 893–898 (2005).

    Article  Google Scholar 

  45. Pfisterer, M. et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA 301, 383–392 (2009).

    Article  CAS  Google Scholar 

  46. Richards, A. M., Lainchbury, J. G., Troughton, R. W. & Strangman, K. NT-proBNP-guided treatment for chronic heart failure: results from the Battlescarred trial [abstract 5946]. Circulation 118, S_1035–S_1036 (2008).

    Google Scholar 

  47. Eurlings, L. et al. Can pro-brain natriuretic peptide-guided therapy of heart failure improve heart failure morbidity and mortality? Main outcome of the PRIMA study [abstract 402-14]. Presented at the ACC 58th Annual Scientific Session (Orlando, USA; 29–31 March 2009).

Download references

Acknowledgements

Désirée Lie, University of California, Orange, CA is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Braunwald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Donoghue, M., Braunwald, E. Natriuretic peptides in heart failure: should therapy be guided by BNP levels?. Nat Rev Cardiol 7, 13–20 (2010). https://doi.org/10.1038/nrcardio.2009.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing