Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis

Abstract

Hypoxia-inducible factor-1 (HIF-1) has a key role in cellular responses to hypoxia, including the regulation of genes involved in energy metabolism, angiogenesis and apoptosis1,2,3,4. The α subunits of HIF are rapidly degraded by the proteasome under normal conditions, but are stabilized by hypoxia5. Cobaltous ions or iron chelators mimic hypoxia, indicating that the stimuli may interact through effects on a ferroprotein oxygen sensor6,7. Here we demonstrate a critical role for the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL in HIF-1 regulation. In VHL-defective cells, HIF α-subunits are constitutively stabilized and HIF-1 is activated. Re-expression of pVHL restored oxygen-dependent instability. pVHL and HIF α-subunits co-immunoprecipitate, and pVHL is present in the hypoxic HIF-1 DNA-binding complex. In cells exposed to iron chelation or cobaltous ions, HIF-1 is dissociated from pVHL. These findings indicate that the interaction between HIF-1 and pVHL is iron dependent, and thatit is necessary for the oxygen-dependent degradation of HIF α-subunits. Thus, constitutive HIF-1 activation may underlie the angiogenic phenotype of VHL-associated tumours. The pVHL/HIF-1 interaction provides a new focus for understanding cellular oxygen sensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of pVHL on oxygen-regulated gene expression.
Figure 2: Effect of pVHL on HIF-1 and HRE activity.
Figure 3: Association of pVHL with HIF-1.
Figure 4: Effect of cobaltous ions and iron chelation on the pVHL/HIF-1 interaction.
Figure 5: Effect of pVHL on HIFα stability and ODD domain function.

Similar content being viewed by others

References

  1. Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor I is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Bunn, H. F. & Poyton, R. O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839– 885 (1996).

    Article  CAS  Google Scholar 

  3. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485 –90 (1998).

    Article  ADS  CAS  Google Scholar 

  4. An, W. G. et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392, 405–408 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an oxygen-dependent domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 ( 1998).

    Article  ADS  CAS  Google Scholar 

  6. Goldberg, M. A., Dunning, S. P. & Bunn, H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Wang, G. L. & Semenza, G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82 , 3610–3615 (1993).

    CAS  PubMed  Google Scholar 

  8. Warburg, O. The Metabolism of Tumours (Arnold Constable, London, ( 1930).

    Google Scholar 

  9. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  Google Scholar 

  10. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Kaelin, W. G. & Maher, E. R. The VHL tumour-suppressor gene paradigm. Trends Genet. 14, 423– 426 (1998).

    Article  CAS  Google Scholar 

  12. Gnarra, J. R. et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl Acad. Sci. USA 93, 10589– 10594 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. J & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Dang, C. V. & Semenza, G. L. Oncogenic alterations of metabolism. Trends Biochem. Sci. 24, 68– 72 (1999).

    Article  CAS  Google Scholar 

  15. Huang, L. E., Arany, Z., Livingston, D. M. & Bunn, H. F. Activation of hypoxia-inducible transcription factor depends primarily on redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32253–32259 ( 1996).

    Article  CAS  Google Scholar 

  16. Wiesener, M. S. et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92, 2260–2268 ( 1998).

    CAS  PubMed  Google Scholar 

  17. Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W. G. J Tumour supression by the human von Hippel-Lindau gene product. Nature Med. 1, 822–826 (1995).

    Article  CAS  Google Scholar 

  18. Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. J. Biol. Chem. 272, 22642– 22647 (1997).

    Article  CAS  Google Scholar 

  19. Pause, A. et al. the von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156– 2161 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Lonergan, K. M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell Biol. 18, 732– 741 (1998).

    Article  CAS  Google Scholar 

  21. Maxwell, P. H. et al. Hypoxia inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Zelzer, E. et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1α/ARNT. EMBO J. 17, 5083 –5094 (1998).

    Article  Google Scholar 

  23. Duan, D. R. et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402– 1406 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Ohh, M. et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1, 959–968 ( 1998).

    Article  CAS  Google Scholar 

  25. Wood, S. M. et al. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 α-subunit (HIF-1α). J. Biol. Chem. 273, 8360–8368 (1998).

    Article  CAS  Google Scholar 

  26. Fandrey, J., Frede, S. & Jelkmann, W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem. J. 303, 507– 510 (1994).

    Article  CAS  Google Scholar 

  27. Iwai, K. et al. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl Acad. Sci. USA 95, 4924– 4928 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Ho, V. T. & Bunn, H. F. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem. Biophys. Res. Commun. 223, 175–180 (1996).

    Article  CAS  Google Scholar 

  29. Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genet. 7, 85– 90 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Kaelin, C. Buys and M. Lerman for cell lines, and N. Proudfoot, A.Harris, D. Gillespie, J. O'Rourke, Y.-M. Tian and L. Nicholls. Financial support was from the Wellcome Trust, the Barnes Trust, the Deutsche Forschungsgemeinschaft, the Cancer Research Campaign, Action Research and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Ratcliffe.

Supplementary information

41586_1999_BF20459_MOESM1_ESM.doc

Length and sequence of riboprobe templates; HIF alpha subunit expression in renal carcinoma cells bearing VHL mutations; Hypoxic response element plasmids; Figure legend for figure S1 (DOC 22 kb)

Figure S1 (GIF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, P., Wiesener, M., Chang, GW. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999). https://doi.org/10.1038/20459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20459

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing