Skip to main content

Advertisement

Log in

Cellular Mechanisms in Mitral Valve Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The mitral valve is a living structure comprised of specific structural components which contain a heterogeneous population of cells. The cells include an amalgam of interstitial cells within the valve and a continuous covering of endothelial cells, each of which play a role in responding to the mechanical forces that the valve experiences, to maintain the function and durability of the valve. Attention on the characteristics and function of valve cells has focused mainly on those in the aortic valve, with relatively few studies addressing the role of these cells in the physiological and pathophysiological function of the mitral valve. This article reviews what is known about the function of cells within the mitral valve and how the changes in the physical and chemical environments can affect their function in the different types of mitral valve disease. Investigating the contribution of the cellular components of the mitral valve to valve function in health and disease will aid the understanding of how the durability and function of the valve are regulated, and possibly highlight molecular and pharmacological targets for the development of novel treatments for mitral valve disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams, T. H., & Jew, J. Y. (2004). Is the mitral valve passive flap theory overstated? An active valve is hypothesized. Medical Hypotheses, 62(62), 605–611.

    Article  PubMed  CAS  Google Scholar 

  2. Yacoub, M. H., Kilner, P. J., Birks, E. J., & Misfeld, M. (1999). The aortic outflow and root: a tale of dynamism and crosstalk. The Annals of Thoracic Surgery, 68(68), S37–S43.

    Article  PubMed  CAS  Google Scholar 

  3. Tsakiris, A. G., Gordon, D. A., Padiyar, R., Frechette, D., & Labrosse, C. (1978). The role of displacement of the mitral annulus in left atrial filling and emptying in the intact dog. Canadian Journal of Physiology and Pharmacology, 56(56), 447–457.

    Article  PubMed  CAS  Google Scholar 

  4. Muresian, H. (2009). The clinical anatomy of the mitral valve. Clinical Anatomy, 22(22), 85–98.

    Article  PubMed  Google Scholar 

  5. Misfeld, M., & Sievers, H. H. (2007). Heart valve macro- and microstructure. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(362), 1421–1436.

    Article  PubMed  Google Scholar 

  6. Liao, J., Priddy, L. B., Wang, B., Chen, J., & Vesely, I. (2009). Ultrastructure of porcine mitral valve chordae tendineae. The Journal of Heart Valve Disease, 18(18), 292–299.

    PubMed  Google Scholar 

  7. Rodriguez, F., Langer, F., Harrington, K. B., Tibayan, F. A., Zasio, M. K., Cheng, A., et al. (2004). Importance of mitral valve second-order chordae for left ventricular geometry, wall thickening mechanics, and global systolic function. Circulation, 110, II115–II122.

    PubMed  Google Scholar 

  8. Silbiger, J. J., & Bazaz, R. (2009). Contemporary insights into the functional anatomy of the mitral valve. American Heart Journal, 158(158), 887–895.

    Article  PubMed  Google Scholar 

  9. Brand, N. J., Roy, A., Hoare, G., Chester, A., & Yacoub, M. H. (2006). Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers. The International Journal of Biochemistry & Cell Biology, 38(38), 30–42.

    Article  CAS  Google Scholar 

  10. Chester, A. H., & Taylor, P. M. (2007). Molecular and functional characteristics of heart-valve interstitial cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(362), 1437–1443.

    Article  PubMed  CAS  Google Scholar 

  11. Taylor, P. M., Batten, P., Brand, N. J., Thomas, P. S., & Yacoub, M. H. (2003). The cardiac valve interstitial cell. The International Journal of Biochemistry & Cell Biology, 35(35), 113–118.

    Article  CAS  Google Scholar 

  12. Carabello, B. A. (2008). The current therapy for mitral regurgitation. Journal of the American College of Cardiology, 52(52), 319–326.

    Article  PubMed  Google Scholar 

  13. Donnelly, K. B. (2008). Cardiac valvular pathology: comparative pathology and animal models of acquired cardiac valvular diseases. Toxicologic Pathology, 36(36), 204–217.

    Article  PubMed  CAS  Google Scholar 

  14. Hadian, M., Corcoran, B. M., & Bradshaw, J. P. (2010). Molecular changes in fibrillar collagen in myxomatous mitral valve disease. Cardiovascular Pathology, 19(19), e141–e148.

    Article  PubMed  CAS  Google Scholar 

  15. Grande-Allen, K. J., Griffin, B. P., Ratliff, N. B., Cosgrove, D. M., & Vesely, I. (2003). Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. Journal of the American College of Cardiology, 42(42), 271–277.

    Article  PubMed  CAS  Google Scholar 

  16. Soini, Y., Satta, J., Maatta, M., & Autio-Harmainen, H. (2001). Expression of MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart. The Journal of Pathology, 194(194), 225–231.

    Article  PubMed  CAS  Google Scholar 

  17. Rajamannan, N. M., Antonini-Canterin, F., Moura, L., Zamorano, J. L., Rosenhek, R. A., Best, P. J., et al. (2009). Medical therapy for rheumatic heart disease: is it time to be proactive rather than reactive? Indian Heart Journal, 61(61), 14–23.

    PubMed  Google Scholar 

  18. Veinot, J. P. (2006). Pathology of inflammatory native valvular heart disease. Cardiovascular Pathology, 15(15), 243–251.

    Article  PubMed  CAS  Google Scholar 

  19. Rajamannan, N. M., Nealis, T. B., Subramaniam, M., Pandya, S., Stock, S. R., Ignatiev, C. I., et al. (2005). Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation, 111(111), 3296–3301.

    Article  PubMed  CAS  Google Scholar 

  20. Prunotto, M., Caimmi, P. P., & Bongiovanni, M. (2010). Cellular pathology of mitral valve prolapse. Cardiovascular Pathology, 19(19), e113–e117.

    Article  PubMed  CAS  Google Scholar 

  21. Schoen, F. J. (2005). Cardiac valves and valvular pathology: update on function, disease, repair, and replacement. Cardiovascular Pathology, 14(14), 189–194.

    Article  PubMed  Google Scholar 

  22. Dainese, L., Polvani, G., Barili, F., Maccari, F., Guarino, A., Alamanni, F., et al. (2007). Fine characterization of mitral valve glycosaminoglycans and their modification with degenerative disease. Clinical Chemistry and Laboratory Medicine, 45(45), 361–366.

    Article  PubMed  CAS  Google Scholar 

  23. Tamura, K., Fukuda, Y., Ishizaki, M., Masuda, Y., Yamanaka, N., & Ferrans, V. J. (1995). Abnormalities in elastic fibers and other connective-tissue components of floppy mitral valve. American Heart Journal, 129(129), 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  24. Grau, J. B., Pirelli, L., Yu, P. J., Galloway, A. C., & Ostrer, H. (2007). The genetics of mitral valve prolapse. Clinical Genetics, 72(72), 288–295.

    Article  PubMed  CAS  Google Scholar 

  25. Levine, R. A., & Slaugenhaupt, S. A. (2007). Molecular genetics of mitral valve prolapse. Current Opinion in Cardiology, 22(22), 171–175.

    Article  PubMed  Google Scholar 

  26. Mahimkar, R., Nguyen, A., Mann, M., Yeh, C. C., Zhu, B. Q., Karliner, J. S., et al. (2009). Cardiac transgenic matrix metalloproteinase-2 expression induces myxomatous valve degeneration: a potential model of mitral valve prolapse disease. Cardiovascular Pathology, 18(18), 253–261.

    Article  PubMed  CAS  Google Scholar 

  27. Rabkin, E., Aikawa, M., Stone, J. R., Fukumoto, Y., Libby, P., & Schoen, F. J. (2001). Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation, 104(104), 2525–2532.

    Article  PubMed  CAS  Google Scholar 

  28. Grande-Allen, K. J., Borowski, A. G., Troughton, R. W., Houghtaling, P. L., Dipaola, N. R., Moravec, C. S., et al. (2005). Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. Journal of the American College of Cardiology, 45(45), 54–61.

    Article  PubMed  CAS  Google Scholar 

  29. Stephens, E. H., Timek, T. A., Daughters, G. T., Kuo, J. J., Patton, A. M., Baggett, L. S., et al. (2009). Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation, 120(120), S112–S119.

    Article  PubMed  CAS  Google Scholar 

  30. Stephens, E. H., Nguyen, T. C., Itoh, A., Ingels, N. B., Jr., Miller, D. C., & Grande-Allen, K. J. (2008). The effects of mitral regurgitation alone are sufficient for leaflet remodeling. Circulation, 118(118), S243–S249.

    Article  PubMed  Google Scholar 

  31. Dal-Bianco, J. P., Aikawa, E., Bischoff, J., Guerrero, J. L., Handschumacher, M. D., Sullivan, S., et al. (2009). Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation, 120(120), 334–342.

    Article  PubMed  Google Scholar 

  32. Timek, T. A., Lai, D. T., Dagum, P., Liang, D., Daughters, G. T., Ingels, N. B., Jr., et al. (2006). Mitral leaflet remodeling in dilated cardiomyopathy. Circulation, 114(114), I518–I523.

    PubMed  Google Scholar 

  33. Chaput, M., Handschumacher, M. D., Tournoux, F., Hua, L., Guerrero, J. L., Vlahakes, G. J., et al. (2008). Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation, 118(118), 845–852.

    Article  PubMed  Google Scholar 

  34. Zanettini, R., Antonini, A., Gatto, G., Gentile, R., Tesei, S., & Pezzoli, G. (2007). Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. The New England Journal of Medicine, 356(356), 39–46.

    Article  PubMed  CAS  Google Scholar 

  35. Alizzi, A. M., Al-Masri, A. H., Murton, M. M., Dixit, A. S., Hemli, J. M., Challis, M., et al. (2006). Methysergide-induced valvular heart disease: a report of 2 cases. The Heart Surgery Forum, 9(9), E792–E793.

    Article  PubMed  Google Scholar 

  36. Hopkins, P. N., & Polukoff, G. I. (2003). Risk of valvular heart disease associated with use of fenfluramine. BMC Cardiovascular Disorders, 3(3), 5.

    Article  PubMed  Google Scholar 

  37. Hendrikx, M., Van, D. J., Flameng, W., & Daenen, W. (1996). Aortic and mitral valve disease induced by ergotamine therapy for migraine: a case report and review of the literature. The Journal of Heart Valve Disease, 5(5), 235–237.

    PubMed  CAS  Google Scholar 

  38. Baumann, M. H., & Rothman, R. B. (2009). Neural and cardiac toxicities associated with 3,4-methylenedioxymethamphetamine (MDMA). International Review of Neurobiology, 88(88), 257–296.

    Article  PubMed  CAS  Google Scholar 

  39. Rothman, R. B. (2002). Anorexogen-related cardiac valvulopathy. Annals of Internal Medicine, 136(136), 779.

    PubMed  Google Scholar 

  40. Rothman, R. B., & Baumann, M. H. (2009). Serotonergic drugs and valvular heart disease. Expert Opinion on Drug Safety, 8(8), 317–329.

    Article  PubMed  CAS  Google Scholar 

  41. Rothman, R. B., Baumann, M. H., Savage, J. E., Rauser, L., McBride, A., Hufeisen, S. J., et al. (2000). Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation, 102(102), 2836–2841.

    PubMed  CAS  Google Scholar 

  42. De Paepe, A., Devereux, R. B., Dietz, H. C., Hennekam, R. C., & Pyeritz, R. E. (1996). Revised diagnostic criteria for the Marfan syndrome. American Journal of Medical Genetics, 62(62), 417–426.

    PubMed  Google Scholar 

  43. Schoen, F. J., & Levy, R. J. (1999). Founder’s Award, 25th Annual Meeting of the Society for Biomaterials, perspectives. Providence, RI, April 28-May 2, 1999. Tissue heart valves: current challenges and future research perspectives. Journal of Biomedical Materials Research, 47(47), 439–465.

    Article  PubMed  CAS  Google Scholar 

  44. Schoen, F. J. (2008). Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 118(118), 1864–1880.

    Article  PubMed  Google Scholar 

  45. Butcher, J. T., Penrod, A. M., Garcia, A. J., & Nerem, R. M. (2004). Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(24), 1429–1434.

    Article  PubMed  CAS  Google Scholar 

  46. Simmons, C. A., Grant, G. R., Manduchi, E., & Davies, P. F. (2005). Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circulation Research, 96(96), 792–799.

    Article  PubMed  CAS  Google Scholar 

  47. Butcher, J. T., Simmons, C. A., & Warnock, J. N. (2008). Mechanobiology of the aortic heart valve. The Journal of Heart Valve Disease, 17(17), 62–73.

    PubMed  Google Scholar 

  48. El-Hamamsy, I., Balachandran, K., Yacoub, M. H., Stevens, L. M., Sarathchandra, P., Taylor, P. M., et al. (2009). Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. Journal of the American College of Cardiology, 53(53), 1448–1455.

    Article  PubMed  CAS  Google Scholar 

  49. Armstrong, E. J., & Bischoff, J. (2004). Heart valve development: endothelial cell signaling and differentiation. Circulation Research, 95(95), 459–470.

    Article  PubMed  CAS  Google Scholar 

  50. Mariscalco, G., Lorusso, R., Sessa, F., Bruno, V. D., Piffaretti, G., Banach, M., et al. (2010). Imbalance between pro-angiogenic and anti-angiogenic factors in rheumatic and mixomatous mitral valves. Int J Cardiol. doi:10.1016/j.ijcard.2010.08.001.

  51. Street, J., & Lenehan, B. (2009). Vascular endothelial growth factor regulates osteoblast survival—evidence for an autocrine feedback mechanism. Journal of Orthopaedic Surgery and Research, 4(4), 19.

    Article  PubMed  Google Scholar 

  52. Behr, B., Tang, C., Germann, G., Longaker, M. T., & Quarto, N. (2011). Locally applied VEGFA increases the osteogenic healing capacity of human adipose derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells, 29, 286–296.

    Article  PubMed  CAS  Google Scholar 

  53. Wylie-Sears, J., Aikawa, E., Levine, R. A., Yang, J. H., & Bischoff, J. (2011). Mitral valve endothelial cells with osteogenic differentiation potential. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(31), 598–607.

    Article  PubMed  CAS  Google Scholar 

  54. Durbin, A. D., & Gotlieb, A. I. (2002). Advances towards understanding heart valve response to injury. Cardiovascular Pathology, 11(11), 69–77.

    Article  PubMed  Google Scholar 

  55. Mjaatvedt, C. H., Kern, C. B., Norris, R. A., Fairey, S., & Cave, C. L. (2005). Normal distribution of melanocytes in the mouse heart. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 285(285), 748–757.

    Article  PubMed  Google Scholar 

  56. Swanson, J. C., Krishnamurthy, G., Itoh, A., Escobar Kvitting, J. P., Bothe, W., Craig, M. D., et al. (2011). Multiple mitral leaflet contractile systems in the beating heart. Journal of Biomechanics, 44(44), 1328–1333.

    Article  PubMed  Google Scholar 

  57. Cagli, K., Basar, N., Cagli, K., Armutcu, F., Aylak, F., Yalcinkaya, A., et al. (2010). Association of serum fetuin-A with valvular calcium concentration in rheumatic mitral valve disease. The Journal of Heart Valve Disease, 19(19), 636–643.

    PubMed  Google Scholar 

  58. Gupta, V., Werdenberg, J. A., Lawrence, B. D., Mendez, J. S., Stephens, E. H., & Grande-Allen, K. J. (2008). Reversible secretion of glycosaminoglycans and proteoglycans by cyclically stretched valvular cells in 3D culture. Annals of Biomedical Engineering, 36(36), 1092–1103.

    Article  PubMed  Google Scholar 

  59. Gupta, V., Werdenberg, J. A., Mendez, J. S., & Jane Grande-Allen, K. (2008). Influence of strain on proteoglycan synthesis by valvular interstitial cells in three-dimensional culture. Acta Biomaterialia, 4(4), 88–96.

    Article  PubMed  CAS  Google Scholar 

  60. Gupta, V., Tseng, H., Lawrence, B. D., & Jane Grande-Allen, K. (2009). Effect of cyclic mechanical strain on glycosaminoglycan and proteoglycan synthesis by heart valve cells. Acta Biomaterialia, 5(5), 531–540.

    Article  PubMed  CAS  Google Scholar 

  61. Rabkin-Aikawa, E., Farber, M., Aikawa, M., & Schoen, F. J. (2004). Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. The Journal of Heart Valve Disease, 13(13), 841–847.

    PubMed  Google Scholar 

  62. Wang, L., Korossis, S., Ingham, E., Fisher, J., & Jin, Z. (2008). Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications. The Journal of Heart Valve Disease, 17(17), 700–709.

    PubMed  Google Scholar 

  63. Filion, R. J., & Ellis, C. G. (2003). A finite difference model of O2 transport in aortic valve cusps: importance of intrinsic microcirculation. American Journal of Physiology. Heart and Circulatory Physiology, 285(285), H2099–H2104.

    PubMed  CAS  Google Scholar 

  64. Weind, K. L., Boughner, D. R., Rigutto, L., & Ellis, C. G. (2001). Oxygen diffusion and consumption of aortic valve cusps. American Journal of Physiology. Heart and Circulatory Physiology, 281(281), H2604–H2611.

    PubMed  CAS  Google Scholar 

  65. Weind, K. L., Ellis, C. G., & Boughner, D. R. (2002). Aortic valve cusp vessel density: relationship with tissue thickness. The Journal of Thoracic and Cardiovascular Surgery, 123(123), 333–340.

    Article  PubMed  CAS  Google Scholar 

  66. Kimura, N., Shukunami, C., Hakuno, D., Yoshioka, M., Miura, S., Docheva, D., et al. (2008). Local tenomodulin absence, angiogenesis, and matrix metalloproteinase activation are associated with the rupture of the chordae tendineae cordis. Circulation, 118(118), 1737–1747.

    Article  PubMed  CAS  Google Scholar 

  67. Yoshioka, J., & Lee, R. T. (2008). Vascularization as a potential enemy in valvular heart disease. Circulation, 118(118), 1694–1696.

    Article  PubMed  Google Scholar 

  68. Marron, K., Yacoub, M. H., Polak, J. M., Sheppard, M. N., Fagan, D., Whitehead, B. F., et al. (1996). Innervation of human atrioventricular and arterial valves. Circulation, 94(94), 368–375.

    PubMed  CAS  Google Scholar 

  69. Chester, A. H., Kershaw, J. D., Sarathchandra, P., & Yacoub, M. H. (2008). Localisation and function of nerves in the aortic root. Journal of Molecular and Cellular Cardiology, 44(44), 1045–1052.

    Article  PubMed  CAS  Google Scholar 

  70. Swanson, J. C., Krishnamurthy, G., Kvitting, J. P., Miller, D. C., & Ingels, N. B., Jr. (2011). Electromechanical coupling between the atria and mitral valve. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1267–H1273.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian H. Chester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salhiyyah, K., Yacoub, M.H. & Chester, A.H. Cellular Mechanisms in Mitral Valve Disease. J. of Cardiovasc. Trans. Res. 4, 702–709 (2011). https://doi.org/10.1007/s12265-011-9318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9318-7

Keywords

Navigation