Skip to main content

Advertisement

Log in

Effect of cardiac resynchronization therapy on broad neurohormone biomarkers in heart failure

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Neurohormonal dysregulation contributes to heart failure (HF) progression. We sought to determine the effect of cardiac resynchronization therapy (CRT) on nerve growth factor (NGF), a biomarker that promotes the maturation and survival of sympathetic nerve endings, and amino-terminal propeptide of type III procollagen (PIIINP), a marker of type III collagen synthesis.

Methods

This prospective study consisted of 45 consecutive patients who received cardiac resynchronization therapy defibrillator for advanced HF and 20 healthy age-matched controls. New York Heart Association class, distance of 6-min walk, echocardiography and plasma concentrations of NGF, PIIINP, b-type natriuretic peptide (BNP), norepinephrine, and epinephrine were measured before and 6 months after CRT. Response to CRT was defined as 15% or greater reduction in left ventricular end-systolic volume index at 6-month follow-up.

Results

The baseline BNP (2.61 ± 0.51 vs. 1.53 ± 0.44 ug/L, P < 0.01) and PIIINP (0.88 ± 0.21 vs. 0.71 ± 0.14 μg/L, P = 0.01), but not other biomarkers, were elevated in HF compared to controls. Twenty-two of 45 patients (49%) responded to CRT. The responder group demonstrated significant decrease only in BNP level from 2.61 ± 0.51 to 2.31 ± 0.41 μg/L (P = 0.04) at 6-month follow-up, paralleling the clinical improvements. The baseline PIIINP, rather than the other biomarkers, was lower in CRT responders than non-responders (0.80 ± 0.20 vs. 0.96 ± 0.19 μg/L, P = 0.03). Univariate and multivariate analysis showed that less elevated plasma PIIINP level in HF might be an independent biomarker predicting better response to CRT (odds ratio = 0.20, 95% CI = 0.03–1.17, P = 0.07).

Conclusion

The less elevated PIIINP level in HF, which is suggestive of a lesser amount of cardiac fibrosis, has a trend in association with a favorable response to CRT. Contrary to previous reports, NGF levels are not reduced during HF with optimal medical therapy, and there is no NGF rebound in CRT responders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

ARB:

Angiotensin II receptor blockers

AV:

Atrioventricular

BMI:

Body mass index

BNP:

B-type natriuretic peptide

CI:

Confidence interval

CRT:

Cardiac resynchronization therapy

CRT-D:

Cardiac resynchronization therapy defibrillator

CS:

Coronary sinus

EPI:

Epinephrine

HF:

Heart failure

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

LVEDV:

Left ventricular end-diastolic volume

LVESV:

Left ventricular end-systolic volume

NE:

Norepinephrine

NGF:

Nerve growth factor

NYHA:

New York Heart Association

OR:

Odds ratio

PIIINP:

Amino-terminal propeptide of type III procollagen

RV:

Right ventricular

References

  1. Mann, D. L., & Bristow, M. R. (2005). Mechanisms and models in heart failure: The biomechanical model and beyond. Circulation, 111, 2837–2849.

    Article  PubMed  Google Scholar 

  2. Grassi, G., Bolla, G., Quarti-Trevano, F., Arenare, F., Brambilla, G., & Mancia, G. (2008). Sympathetic activation in congestive heart failure: Reproducibility of neuroadrenergic markers. European Journal of Heart Failure, 10, 1186–1191.

    Article  PubMed  CAS  Google Scholar 

  3. CIBIS-II Investigators and Committees. (1999). The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomized trial. Lancet, 353, 9–13.

    Article  Google Scholar 

  4. Packer, M., Bristow, M., Cohn, J., et al. (1996). The effect of further carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. The New England Journal of Medicine, 334, 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  5. Abraham, W., Fisher, W., Smith, A., et al. (2002). Cardiac resynchronization in chronic heart failure. The New England Journal of Medicine, 346, 1845–1853.

    Article  PubMed  Google Scholar 

  6. Cleland, G., Daubert, J., Erdmann, E., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352, 1539–1549.

    Article  PubMed  CAS  Google Scholar 

  7. Berger, R., Shankar, A., Fruhwald, F., et al. (2009). Relationships between cardiac resynchronization therapy and N-terminal pro-brain natriuretic peptide in patients with heart failure and markers of cardiac dyssynchrony: An analysis from the Cardiac Resynchronization in Heart Failure (CARE-HF) Study. European Heart Journal, 30, 2109–2116.

    Article  PubMed  CAS  Google Scholar 

  8. Cleland, J., Freemantle, N., Ghio, S., et al. (2008). Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response a report from the CARE-HF (Cardiac Resynchronization in Heart Failure) Trial. Journal of the American College of Cardiology, 52, 438–445.

    Article  PubMed  Google Scholar 

  9. Kreusser, M. M., Buss, S. J., Krebs, J., et al. (2008). Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. Journal of Molecular and Cellular Cardiology, 44, 380–387.

    Article  PubMed  CAS  Google Scholar 

  10. Qin, F., Vulapalli, R. S., Stevens, S. Y., & Liang, C. S. (2002). Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. American Journal of Physiology. Heart and Circulatory Physiology, 282, H363–H371.

    PubMed  CAS  Google Scholar 

  11. Risteli, J., Niemi, S., Trivedi, P., Maentausta, O., Mowat, A. P., & Risteli, L. (1988). Rapid equilibrium radioimmunoassay for the amino-terminal propeptide of human type III procollagen. Clinical Chemistry, 34, 715–718.

    PubMed  CAS  Google Scholar 

  12. Lang, U. E., Gallinat, J., Danker-Hopfe, H., Bajbouj, M., & Hellweg, R. (2003). Nerve growth factor serum concentrations in healthy human volunteers: Physiological variance and stability. Neuroscience Letters, 344, 13–16.

    Article  PubMed  CAS  Google Scholar 

  13. Tang, L., Cha, Y. M., Li, H., Chen, P. S., & Lin, S. F. (2006). Fiber-optic immuno-biosensor for rapid and accurate detection of nerve growth factor in human blood. Conference Proceedings: IEEE Engineering in Medicine and Biology Society, 1, 811–814.

    Article  Google Scholar 

  14. Yu, C. M., Gorcsan, J., 3rd, Bleeker, G. B., et al. (2007). Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. The American Journal of Cardiology, 100, 1263–1270.

    Article  PubMed  Google Scholar 

  15. Chung, S., Leon, A., Tavazzi, L., et al. (2008). Results of the Predictors of Response to CRT (PROSPECT) Trial. Circulation, 117, 2608–2616.

    Article  PubMed  Google Scholar 

  16. Bax, J., Gabe, B., Bleeker, G., et al. (2004). Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. JACC, 44, 1834–1840.

    PubMed  Google Scholar 

  17. Bristow, M., Saxon, L., & Boehmer, J. (2004). Cardiac resynchronization therapy with or without an implantable defibrillator in advanced heart failure. The New England Journal of Medicine, 350, 2140–2150.

    Article  PubMed  CAS  Google Scholar 

  18. Young, J., Abraham, W., Smith, A., et al. (2003). Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. JAMA, 289, 2685–2694.

    Article  PubMed  Google Scholar 

  19. Cohn, J. N. (1995). Critical review of heart failure: The role of left ventricular remodeling in the therapeutic response. Clinical Cardiology, 18, IV4–IV12.

    Article  PubMed  CAS  Google Scholar 

  20. Nigmatullina, R. R., Kirillova, V. V., Jourjikiya, R. K., et al. (2009). Disrupted serotonergic and sympathoadrenal systems in patients with chronic heart failure may serve as new therapeutic targets and novel biomarkers to assess severity, progression and response to treatment. Cardiology, 113, 277–286.

    Article  PubMed  CAS  Google Scholar 

  21. Boriani, G., Regoli, F., Saporito, D., et al. (2006). Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: Time courses and prediction of response. Peptides, 27, 1776–1786.

    Article  PubMed  CAS  Google Scholar 

  22. Braun, M. U., Rauwolf, T., Zerm, T., Schulze, M., Schnabel, A., & Strasser, R. H. (2005). Long term biventricular resynchronisation therapy in advanced heart failure: Effect on neurohormones. Heart, 91, 601–605.

    Article  PubMed  CAS  Google Scholar 

  23. Seifert, M., Schlegl, M., Hoersch, W., et al. (2007). Functional capacity and changes in the neurohormonal and cytokine status after long-term CRT in heart failure patients. International Journal of Cardiology, 121, 68–73.

    Article  PubMed  CAS  Google Scholar 

  24. Kaye, D., Vaddadi, G., Gruskin, S., Du, X., & Esler, M. (2000). Reduced myocardial nerve growth factor expression in human and experimental heart failure. Circulation Research, 86, E80–E84.

    PubMed  CAS  Google Scholar 

  25. Furukawa, S., Furukawa, Y., Satoyoshi, E., & Hayashi, K. (1987). Regulation of nerve growth factor synthesis/secretion by catecholamine in cultured mouse astroglial cells. Biochemical and Biophysical Research Communications, 147, 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  26. Furukawa, Y., Tomioka, N., Sato, W., Satoyoshi, E., Hayashi, K., & Furukawa, S. (1989). Catecholamines increase nerve growth factor mRNA content in both mouse astroglial cells and fibroblast cells. FEBS Letters, 247, 463–467.

    Article  PubMed  CAS  Google Scholar 

  27. Kawai, H., Fan, T. H., Dong, E., et al. (1999). ACE inhibition improves cardiac NE uptake and attenuates sympathetic nerve terminal abnormalities in heart failure. The American Journal of Physiology, 277, H1609–H1617.

    PubMed  CAS  Google Scholar 

  28. Kawai, H., Mohan, A., Hagen, J., et al. (2000). Alterations in cardiac adrenergic terminal function and beta-adrenoceptor density in pacing-induced heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 278, H1708–H1716.

    PubMed  CAS  Google Scholar 

  29. Cha, Y. M., Redfield, M. M., Shah, S., Shen, W. K., Fishbein, M. C., & Chen, P. S. (2005). Effects of omapatrilat on cardiac nerve sprouting and structural remodeling in experimental congestive heart failure. Heart Rhythm, 2, 984–990.

    Article  PubMed  Google Scholar 

  30. Yamamoto, K., Burnett, J. C., Jr., Jougasaki, M., et al. (1996). Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension, 28, 988–994.

    PubMed  CAS  Google Scholar 

  31. Mukherjee, D., & Sen, S. (1991). Alteration of collagen phenotypes in ischemic cardiomyopathy. The Journal of Clinical Investigation, 88, 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  32. Cicoira, M., Rossi, A., Bonapace, S., et al. (2004). Independent and additional prognostic value of aminoterminal propeptide of type III procollagen circulating levels in patients with chronic heart failure. Journal of Cardiac Failure, 10, 403–411.

    Article  PubMed  CAS  Google Scholar 

  33. Radauceanu, A., Ducki, C., Virion, J. M., et al. (2008). Extracellular matrix turnover and inflammatory markers independently predict functional status and outcome in chronic heart failure. Journal of Cardiac Failure, 14, 467–474.

    Article  PubMed  CAS  Google Scholar 

  34. Umar, S., Bax, J. J., Klok, M., et al. (2008). Myocardial collagen metabolism in failing hearts before and during cardiac resynchronization therapy. European Journal of Heart Failure, 10, 878–883.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientist Development Grant from AHA Greater Midwest Affiliate AHA 0435347Z and Award for Research in Cardiology Grant from the Mayo Foundation for Medical Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Mei Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Yx., Burnett, J.C., Chen, H.H. et al. Effect of cardiac resynchronization therapy on broad neurohormone biomarkers in heart failure. J Interv Card Electrophysiol 30, 241–249 (2011). https://doi.org/10.1007/s10840-011-9551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-011-9551-7

Keywords

Navigation