Skip to main content
Log in

Novel techniques for assessment of left ventricular systolic function

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The evaluation of left ventricular systolic function is one of the most common reasons for referral for a non-invasive cardiac imaging study. In addition to its diagnostic and prognostic value, an assessment of ejection fraction can also be used to guide medical and device therapy. Thus, obtaining an accurate and reproducible assessment of LVEF is essential for patient management. This review will focus on novel multi-modality techniques used for the quantification of left ventricular systolic function. Emerging echocardiography techniques such as three-dimensional echocardiography and strain imaging and their incremental role over traditional 2D imaging will be discussed. In addition, new developments expanding nuclear imaging techniques’ evaluation of left ventricular systolic function will be reviewed. Finally, an overview of advances in imaging techniques such as cardiac magnetic resonance and cardiac computed tomography, which now allow for an accurate and highly reproducible assessment of LVEF, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dujardin KS, Enriquez-Sarano M, Schaff HV, Bailey KR, Seward JB, Tajik AJ (1999) Mortality and morbidity of aortic regurgitation in clinical practice. A long-term follow-up study. Circulation 99:1851–1857

    PubMed  CAS  Google Scholar 

  2. Ling LH, Enriquez-Sarano M, Seward JB et al (1996) Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 335:1417–1423

    Article  PubMed  CAS  Google Scholar 

  3. Moss AJ, Daubert J, Zareba W (2002) MADIT-II: clinical implications. Card Electrophysiol Rev 6:463–465

    Article  PubMed  Google Scholar 

  4. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    PubMed  CAS  Google Scholar 

  5. Wong M, Johnson G, Shabetai R, et al. (1993) Echocardiographic variables as prognostic indicators and therapeutic monitors in chronic congestive heart failure. Veterans affairs cooperative studies V-HeFT I and II. V-HeFT VA cooperative studies group. Circulation 87:VI65–VI70

    Google Scholar 

  6. Thomson HL, Basmadjian AJ, Rainbird AJ et al (2001) Contrast echocardiography improves the accuracy and reproducibility of left ventricular remodeling measurements: a prospective, randomly assigned, blinded study. J Am Coll Cardiol 38:867–875

    Article  PubMed  CAS  Google Scholar 

  7. Malm S, Frigstad S, Sagberg E, Larsson H, Skjaerpe T (2004) Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging. J Am Coll Cardiol 44:1030–1035

    Article  PubMed  Google Scholar 

  8. Yu EH, Sloggett CE, Iwanochko RM, Rakowski H, Siu SC (2000) Feasibility and accuracy of left ventricular volumes and ejection fraction determination by fundamental, tissue harmonic, and intravenous contrast imaging in difficult-to-image patients. J Am Soc Echocardiogr 13:216–224

    PubMed  CAS  Google Scholar 

  9. Mulvagh SL, Rakowski H, Vannan MA, et al. (2008) American society of echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr 21:1179–1201; quiz 281

    Google Scholar 

  10. Hoffmann R, von Bardeleben S, ten Cate F et al (2005) Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. Eur Heart J 26:607–616

    Article  PubMed  Google Scholar 

  11. Borges AC, Walde T, Reibis RK et al (2002) Does contrast echocardiography with Optison induce myocardial necrosis in humans? J Am Soc Echocardiogr 15:1080–1086

    Article  PubMed  Google Scholar 

  12. Piscaglia F, Bolondi L (2006) The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32:1369–1375

    Article  PubMed  Google Scholar 

  13. Weissman NJ, Cohen MC, Hack TC, Gillam LD, Cohen JL, Kitzman DW (2000) Infusion versus bolus contrast echocardiography: a multicenter, open-label, crossover trial. Am Heart J 139:399–404

    Article  PubMed  CAS  Google Scholar 

  14. Feinstein SB, Cheirif J, Ten Cate FJ et al (1990) Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J Am Coll Cardiol 16:316–324

    Article  PubMed  CAS  Google Scholar 

  15. Chukwu EO, Barasch E, Mihalatos DG et al (2008) Relative importance of errors in left ventricular quantitation by two-dimensional echocardiography: insights from three-dimensional echocardiography and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 21:990–997

    Article  PubMed  Google Scholar 

  16. Mulvagh SL, DeMaria AN, Feinstein SB et al (2000) Contrast echocardiography: current and future applications. J Am Soc Echocardiogr 13:331–342

    Article  PubMed  CAS  Google Scholar 

  17. King DL, Harrison MR, King DL Jr, Gopal AS, Kwan OL, DeMaria AN (1992) Ultrasound beam orientation during standard two-dimensional imaging: assessment by three-dimensional echocardiography. J Am Soc Echocardiogr 5:569–576

    PubMed  CAS  Google Scholar 

  18. Erbel R, Schweizer P, Lambertz H et al (1983) Echoventriculography—a simultaneous analysis of two-dimensional echocardiography and cineventriculography. Circulation 67:205–215

    PubMed  CAS  Google Scholar 

  19. Jeetley P, Hickman M, Kamp O et al (2006) Myocardial contrast echocardiography for the detection of coronary artery stenosis: a prospective multicenter study in comparison with single-photon emission computed tomography. J Am Coll Cardiol 47:141–145

    Article  PubMed  Google Scholar 

  20. Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ (2006) Three-dimensional echocardiography: the benefits of the additional dimension. J Am Coll Cardiol 48:2053–2069

    Article  PubMed  Google Scholar 

  21. Jenkins C, Bricknell K, Hanekom L, Marwick TH (2004) Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 44:878–886

    Article  PubMed  Google Scholar 

  22. Hung J, Lang R, Flachskampf F et al (2007) 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 20:213–233

    Article  PubMed  Google Scholar 

  23. Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ, Erbel R (1997) Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and two-dimensional echocardiography. Circulation 96:4286–4297

    PubMed  CAS  Google Scholar 

  24. Gopal AS, Keller AM, Rigling R, King DL Jr, King DL (1993) Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol 22:258–270

    Article  PubMed  CAS  Google Scholar 

  25. Nosir YF, Lequin MH, Kasprzak JD et al (1998) Measurements and day-to-day variabilities of left ventricular volumes and ejection fraction by three-dimensional echocardiography and comparison with magnetic resonance imaging. Am J Cardiol 82:209–214

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt MA, Ohazama CJ, Agyeman KO et al (1999) Real-time three-dimensional echocardiography for measurement of left ventricular volumes. Am J Cardiol 84:1434–1439

    Article  PubMed  CAS  Google Scholar 

  27. Belohlavek M, Tanabe K, Jakrapanichakul D, Breen JF, Seward JB (2001) Rapid three-dimensional echocardiography: clinically feasible alternative for precise and accurate measurement of left ventricular volumes. Circulation 103:2882–2884

    Article  PubMed  CAS  Google Scholar 

  28. Mannaerts HF, Van Der Heide JA, Kamp O et al (2003) Quantification of left ventricular volumes and ejection fraction using freehand transthoracic three-dimensional echocardiography: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 16:101–109

    Article  PubMed  Google Scholar 

  29. Kawai J, Tanabe K, Morioka S, Shiotani H (2003) Rapid freehand scanning three-dimensional echocardiography: accurate measurement of left ventricular volumes and ejection fraction compared with quantitative gated scintigraphy. J Am Soc Echocardiogr 16:110–115

    Article  PubMed  Google Scholar 

  30. Corsi C, Lang RM, Veronesi F et al (2005) Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation 112:1161–1170

    Article  PubMed  Google Scholar 

  31. Kuhl HP, Schreckenberg M, Rulands D et al (2004) High-resolution transthoracic real-time three-dimensional echocardiography: quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. J Am Coll Cardiol 43:2083–2090

    Article  PubMed  Google Scholar 

  32. Mor-Avi V, Jenkins C, Kuhl HP et al (2008) Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging 1:413–423

    Article  PubMed  Google Scholar 

  33. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH (2009) Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J 30:98–106

    Article  PubMed  Google Scholar 

  34. Mirsky I, Parmley WW (1973) Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res 33:233–243

    PubMed  CAS  Google Scholar 

  35. Marwick TH (2006) Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 47:1313–1327

    Article  PubMed  Google Scholar 

  36. Sengupta PP, Krishnamoorthy VK, Korinek J et al (2007) Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr 20:539–551

    Article  PubMed  Google Scholar 

  37. Geyer H, Caracciolo G, Abe H, et al. (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23:351–369; quiz 453–455

    Google Scholar 

  38. Gjesdal O, Hopp E, Vartdal T et al (2007) Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci 113:287–296

    Article  PubMed  Google Scholar 

  39. Perk G, Tunick PA, Kronzon I (2007) Non-Doppler two-dimensional strain imaging by echocardiography—from technical considerations to clinical applications. J Am Soc Echocardiogr 20:234–243

    Article  PubMed  Google Scholar 

  40. Sjøli B, Ørn S, Grenne B, Ihlen H, Edvardsen T, Brunvand H (2009) Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imaging 2:24–33

    Article  PubMed  Google Scholar 

  41. Vartdal T, Brunvand H, Pettersen E et al (2007) Early prediction of infarct size by strain Doppler echocardiography after coronary reperfusion. J Am Coll Cardiol 49:1715–1721

    Article  PubMed  Google Scholar 

  42. Winter R, Jussila R, Nowak J, Brodin L-A (2007) Speckle tracking echocardiography is a sensitive tool for the detection of myocardial ischemia: a pilot study from the catheterization laboratory during percutaneous coronary intervention. J Am Soc Echocardiogr 20:974–981

    Article  PubMed  Google Scholar 

  43. Delgado V, Ypenburg C, van Bommel RJ et al (2008) Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol 51:1944–1952

    Article  PubMed  Google Scholar 

  44. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54:618–624

    Article  PubMed  Google Scholar 

  45. Voigt J-U, Lindenmeier G, Exner B et al (2003) Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 16:415–423

    Article  PubMed  Google Scholar 

  46. Yu C-M, Sanderson JE, Marwick TH, Oh JK (2007) Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol 49:1903–1914

    Article  PubMed  Google Scholar 

  47. Dandel M, Knollmann FD, Wellnhofer E, Hummel M, Kapell S, Hetzer R (2003) Noninvasive surveillance strategy for early identification of heart transplant recipients with possible coronary stenoses. Transplant Proc 35:2113–2116

    Article  PubMed  CAS  Google Scholar 

  48. Dandel M, Knosalla C, Lehmkuhl H, Hetzer R (2007) Non-Doppler two-dimensional strain imaging-clinical applications. J Am Soc Echocardiogr 20:1019

    Article  PubMed  Google Scholar 

  49. Dandel M, Wellnhofer E, Hummel M, Meyer R, Lehmkuhl H, Hetzer R (2003) Early detection of left ventricular dysfunction related to transplant coronary artery disease. J Heart Lung Transplant 22:1353–1364

    Article  PubMed  Google Scholar 

  50. Jasaityte R, Dandel M, Lehmkuhl H, Hetzer R (2009) Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging. Transplant Proc 41:277–280

    Article  PubMed  CAS  Google Scholar 

  51. Eroglu E, D’hooge J, Sutherland GR, et al. (2008) Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart 94:e3

    Google Scholar 

  52. Marciniak A, Eroglu E, Marciniak M et al (2007) The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr 8:213–221

    Article  PubMed  Google Scholar 

  53. Bristow MR, Saxon LA, Boehmer J et al (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150

    Article  PubMed  CAS  Google Scholar 

  54. Cleland JG, Daubert JC, Erdmann E et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549

    Article  PubMed  CAS  Google Scholar 

  55. Moss AJ, Hall WJ, Cannom DS et al (2009) Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 361:1329–1338

    Article  PubMed  Google Scholar 

  56. Shin HW, Kim H, Son J et al (2010) Tissue Doppler imaging as a prognostic marker for cardiovascular events in heart failure with preserved ejection fraction and atrial fibrillation. J Am Soc Echocardiogr 23:755–761

    Article  PubMed  Google Scholar 

  57. Henneman MM, Bax JJ, Schuijf JD et al (2006) Global and regional left ventricular function: a comparison between gated SPECT, 2D echocardiography and multi-slice computed tomography. Eur J Nucl Med Mol Imaging 33:1452–1460

    Article  PubMed  Google Scholar 

  58. Wu Y-W, Tadamura E, Yamamuro M et al (2008) Estimation of global and regional cardiac function using 64-slice computed tomography: a comparison study with echocardiography, gated-SPECT and cardiovascular magnetic resonance. Int J Cardiol 128:69–76

    Article  PubMed  Google Scholar 

  59. Yamamuro M, Tadamura E, Kubo S et al (2005) Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 234:381–390

    Article  PubMed  Google Scholar 

  60. Juergens KU, Fischbach R (2006) Left ventricular function studied with MDCT. Eur Radiol 16:342–357

    Article  PubMed  Google Scholar 

  61. Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J (2007) Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol 48:30–35

    Article  PubMed  CAS  Google Scholar 

  62. Busch S, Johnson TR, Wintersperger BJ et al (2008) Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur Radiol 18:570–575

    Article  PubMed  CAS  Google Scholar 

  63. Brodoefel H, Kramer U, Reimann A et al (2007) Dual-source CT with improved temporal resolution in assessment of left ventricular function: a pilot study. AJR Am J Roentgenol 189:1064–1070

    Article  PubMed  Google Scholar 

  64. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American college of cardiology foundation quality strategic directions committee appropriateness criteria working group, American college of radiology, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance, American society of nuclear cardiology, North American society for cardiac imaging, society for cardiovascular angiography and interventions, and society of interventional radiology. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  65. Stegger L, Lipke CS, Kies P et al (2007) Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: validation of an elastic surface model approach in comparison to cardiac magnetic resonance imaging, 4D-MSPECT and QGS. Eur J Nucl Med Mol Imaging 34:900–909

    Article  PubMed  Google Scholar 

  66. Wang F, Zhang J, Fang W, Zhao SH, Lu MJ, He ZX (2009) Evaluation of left ventricular volumes and ejection fraction by gated SPECT and cardiac MRI in patients with dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 36:1611–1621

    Article  PubMed  Google Scholar 

  67. Schaefer WM, Lipke CS, Standke D et al (2005) Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med 46:1256–1263

    PubMed  Google Scholar 

  68. Corbett JR, Akinboboye OO, Bacharach SL et al (2006) Equilibrium radionuclide angiocardiography. J Nucl Cardiol 13:e56–e79

    Article  PubMed  Google Scholar 

  69. Friedman JD, Berman DS, Borges-Neto S et al (2006) First-pass radionuclide angiography. J Nucl Cardiol 13:e42–e55

    Article  PubMed  Google Scholar 

  70. Harel F, Finnerty V, Gregoire J et al (2010) Gated blood-pool SPECT versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction. J Nucl Cardiol 17:427–434

    Article  PubMed  Google Scholar 

  71. Juergens KU, Grude M, Maintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410

    Article  PubMed  Google Scholar 

  72. Alfakih K, Reid S, Jones T, Sivananthan M (2004) Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 14:1813–1822

    Article  PubMed  Google Scholar 

  73. Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB (1987) Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 163:697–702

    PubMed  CAS  Google Scholar 

  74. Van Rossum AC, Visser FC, Sprenger M, Van Eenige MJ, Valk J, Roos JP (1988) Evaluation of magnetic resonance imaging for determination of left ventricular ejection fraction and comparison with angiography. Am J Cardiol 62:628–633

    Article  PubMed  Google Scholar 

  75. Markiewicz W, Sechtem U, Kirby R, Derugin N, Caputo GC, Higgins CB (1987) Measurement of ventricular volumes in the dog by nuclear magnetic resonance imaging. J Am Coll Cardiol 10:170–177

    Article  PubMed  CAS  Google Scholar 

  76. Utz JA, Herfkens RJ, Heinsimer JA et al (1987) Cine MR determination of left ventricular ejection fraction. AJR Am J Roentgenol 148:839–843

    PubMed  CAS  Google Scholar 

  77. Semelka RC, Tomei E, Wagner S et al (1990) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373

    Article  PubMed  CAS  Google Scholar 

  78. Bellenger NG, Francis JM, Davies CL, Coats AJ, Pennell DJ (2000) Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson 2:15–22

    Article  PubMed  CAS  Google Scholar 

  79. Bellenger NG, Marcus NJ, Davies C, Yacoub M, Banner NR, Pennell DJ (2000) Left ventricular function and mass after orthotopic heart transplantation: a comparison of cardiovascular magnetic resonance with echocardiography. J Heart Lung Transplant 19:444–452

    Article  PubMed  CAS  Google Scholar 

  80. Miller S, Simonetti OP, Carr J, Kramer U, Finn JP (2002) MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223:263–269

    Article  PubMed  Google Scholar 

  81. Barkhausen J, Goyen M, Ruhm SG, Eggebrecht H, Debatin JF, Ladd ME (2002) Assessment of ventricular function with single breath-hold real-time steady-state free precession cine MR imaging. AJR Am J Roentgenol 178:731–735

    PubMed  Google Scholar 

  82. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269

    PubMed  CAS  Google Scholar 

  83. Wintersperger BJ, Sincleair S, Runge VM et al (2007) Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function. Eur Radiol 17:73–80

    Article  PubMed  Google Scholar 

  84. Heilmaier C, Nassenstein K, Nielles-Vallespin S, Zuehlsdorff S, Hunold P, Barkhausen J (2010) Assessment of left ventricular function with single breath-hold highly accelerated cine MRI combined with guide-point modeling. Eur J Radiol 74:492–499

    Article  PubMed  Google Scholar 

  85. Karamitsos TD, Hudsmith LE, Selvanayagam JB, Neubauer S, Francis JM (2007) Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training. J Cardiovasc Magn Reson 9:777–783

    Article  PubMed  Google Scholar 

  86. Lotjonen JM, Jarvinen VM, Cheong B et al (2008) Evaluation of cardiac biventricular segmentation from multiaxis MRI data: a multicenter study. J Magn Reson Imaging 28:626–636

    Article  PubMed  Google Scholar 

  87. Codella NC, Cham MD, Wong R et al (2010) Rapid and accurate left ventricular chamber quantification using a novel CMR segmentation algorithm: a clinical validation study. J Magn Reson Imaging 31:845–853

    Article  PubMed  Google Scholar 

  88. Latson LA, Powell KA, Sturm B, Schvartzman PR, White RD (2001) Clinical validation of an automated boundary tracking algorithm on cardiac MR images. Int J Cardiovasc Imaging 17:279–286

    Article  PubMed  CAS  Google Scholar 

  89. Lorenzo-Valdes M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8:255–265

    Article  PubMed  Google Scholar 

  90. Pednekar AS, Muthupillai R, Cheong B, Flamm SD (2008) Automatic computation of left ventricular ejection fraction from spatiotemporal information in cine-SSFP cardiac MR images. J Magn Reson Imaging 28:39–50

    Article  PubMed  Google Scholar 

  91. Wintersperger BJ, Reeder SB, Nikolaou K et al (2006) Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging 23:222–227

    Article  PubMed  Google Scholar 

  92. Maredia N, Kozerke S, Larghat A, et al. (2008) Measurement of left ventricular dimensions with contrast-enhanced three-dimensional cine imaging facilitated by k-t SENSE. J Cardiovasc Magn Reson 10:27

    Google Scholar 

  93. Davis CP, McKinnon GC, Debatin JF et al (1994) Normal heart: evaluation with echo-planar MR imaging. Radiology 191:691–696

    PubMed  CAS  Google Scholar 

  94. Bornstedt A, Nagel E, Schalla S, Schnackenburg B, Klein C, Fleck E (2001) Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. J Magn Reson Imaging 14:300–305

    Article  PubMed  CAS  Google Scholar 

  95. Eberle HC, Nassenstein K, Jensen CJ et al (2010) Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol 20:73–80

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Blankstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, S., Skali, H. & Blankstein, R. Novel techniques for assessment of left ventricular systolic function. Heart Fail Rev 16, 327–337 (2011). https://doi.org/10.1007/s10741-010-9219-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9219-x

Keywords

Navigation