Skip to main content
Log in

Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia–reperfusion injury

Evidence for a role of KATP channels

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is a gaseous mediator, produced by the metabolic pathways that regulate tissue concentrations of sulfur–containing amino acids. Recent studies indicate that endogenous or exogenous H2S exerts physiological effects in the cardiovascular system of vertebrates, possibly through modulation of KATP channel opening. The present study was undertaken to examine the hypothesis that H2S is cytoprotective against myocardial ischemia–reperfusion injury and that this protective action is mediated by KATP opening. Rat isolated hearts were Langendorff–perfused and underwent 30 min left main coronary artery occlusion and 120 min reperfusion. The resulting injury was assessed as infarct size, determined by tetrazolium staining. Treatment of hearts with the H2S–donor, NaHS, commencing 10 min prior to the onset of coronary occlusion and maintained until 10 min reperfusion, resulted in a concentration–dependent limitation of infarct size (control, 41.0 ± 2.6% of risk zone; NaHS 0.1 μM, 33.9 ± 2.1%, [0.05 > P < 0.1]; NaHS 1 μM, 20.2 ± 2.1% [P < 0.01]). Pretreatment with the KATP channel blockers glibenclamide 10 μM or sodium 5–hydroxydecanoate (5HD) 100 μM led to abrogation of the infarct–limiting effect of NaHS 1 μM (glibenclamide + NaHS 42.5 ± 3.6%; 5HD + NaHS 44.7 ± 2.2%). No statistically significant effects of NaHS treatment on coronary flow, heart rate or left ventricular developed pressure were observed in this experimental preparation. These data provide the first evidence that exogenous H2S protects against irreversible ischemia–reperfusion injury in myocardium and support the involvement of KATP opening in the mechanism of action. Further work is required to elucidate the potential role of endogenous H2S as a cytoprotective mediator against myocardial ischemia–reperfusion injury, the mechanisms regulating its generation, and the nature of its interaction with protein targets such as the KATP channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMSO:

dimethylsulfoxide

Gli:

glibenclamide

5HD:

sodium 5–hydroxydecanoate

H2S:

hydrogen sulfide

KATP:

ATP–dependent K+ channel

NaHS:

sodium hydrosulfide

References

  1. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    PubMed  CAS  Google Scholar 

  2. Bell RM, Maddock HL, Yellon DM (2003) The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovasc Res 57:405–415

    Article  PubMed  CAS  Google Scholar 

  3. Budas GR, Jovanovic S, Crawford RM, Jovanovic A (2004) Hypoxia–induced preconditioning in adult stimulated cardiomyocytes is mediated by the opening and trafficking of sarcolemmal KATP channels. FASEB J 18:1046–1048

    PubMed  CAS  Google Scholar 

  4. Cheng Y, Ndsiang JF, Tang G, Cao K, Wang R (2004) Hydrogen sulfide–induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287:H2316–H2323

    PubMed  CAS  Google Scholar 

  5. Das M, Parker JE, Halestrap AP (2003) Matrix volume measurements challenge the existence of diazoxide/glibenclamidesensitive KATP channels in rat mitochondria. J Physiol 547:893–902

    Article  PubMed  CAS  Google Scholar 

  6. Dombkowski RA, Russell MJ, Olson KR (2004) Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286:R678–R685

    PubMed  CAS  Google Scholar 

  7. Dombkowski RA, Russell MJ, Schulman AA, Doellmann MM, Olson KR (2005) Vertebrate phylogeny of hydrogen sulfide vasoactivity. Am J Physiol Regul Integr Comp Physiol 288:R243–R52

    PubMed  CAS  Google Scholar 

  8. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A, Ferdinandy P, Baxter GF (2003) B–type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physiol 284:H1592–H1600

    PubMed  CAS  Google Scholar 

  9. Fruchart JC, Nieman MC, Stroes ES, Kastelein JJ, Duriez P (2004) New risk factors for atherosclerosis and patient risk assessment. Circulation 109 (suppl):iii– 15–19

    Article  Google Scholar 

  10. Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Comm 313:362–368

    Article  PubMed  CAS  Google Scholar 

  11. Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Comm 318:756–763

    Article  PubMed  CAS  Google Scholar 

  12. Gross GJ (2000) The role of mitochondrial KATP channels in cardioprotection. Basic Res Cardiol 95:280–284

    Article  PubMed  CAS  Google Scholar 

  13. Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 285:H921–H930

    PubMed  CAS  Google Scholar 

  14. Grover GJ, Garlid KD (2000) ATP–sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cel Cardiol 32:677–695

    CAS  Google Scholar 

  15. Halestrap AP, Clarje SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion: a target for cardioprotection. Cardiovasc Res 61:372–385

    Article  PubMed  CAS  Google Scholar 

  16. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  PubMed  CAS  Google Scholar 

  17. Integrated Risk Information System (2003) Toxicological review of hydrogen sulphide. US Environmental Protection Agency review EPA/635/R–03/005 (pdf.). www. epa. gov/iris [accessed 24 January 2005]

  18. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13–19

    PubMed  CAS  Google Scholar 

  19. Lu Y, O’Dowd BF, Orrego H, Israel Y (1992) Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine gamma–lyase. Biochem Biophys Res Commun 189:749–758

    Article  PubMed  CAS  Google Scholar 

  20. Meier M, Janosik M, Kery V, Kraus JP, Burkhard P (2001) Structure of human cystathionine beta–synthase: a unique pyridoxal 5’–phosphate–dependent heme protein. EMBO J 20:3910–3916

    Article  PubMed  CAS  Google Scholar 

  21. Moore PK, Bhatia M, Moochhala S (2004) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609–611

    Google Scholar 

  22. Quayle JM, Nelson MT, Standen NB (1997) ATP–sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77:1165–1232

    PubMed  CAS  Google Scholar 

  23. Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  PubMed  CAS  Google Scholar 

  24. Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277

    PubMed  CAS  Google Scholar 

  25. Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulphide in vascular sooth muscle. Mol Pharmacol Doi:10. 1124/mol. 105. 017467 [accessed 8 November 2005]

    Google Scholar 

  26. Teague B, Asiedu S, Moore PK (2002) The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 137:139–145

    Article  PubMed  CAS  Google Scholar 

  27. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous mediator? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  28. Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid redox Signal 5:493–501

    Article  PubMed  Google Scholar 

  29. Whiteman M, Armstrong JS, Chu SH, Jia– Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite "scavenger"? J Neurochem 90:765–768

    Article  PubMed  CAS  Google Scholar 

  30. Whiteman M, Cheung N S, Zhu Y–Z, Chu S H, Siau JL, Wong BS, Armstrong JS, Moore PK (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acidmediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798

    Article  PubMed  CAS  Google Scholar 

  31. Zhao W, Wang R (2002) H2S–induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:H474–H480

    PubMed  CAS  Google Scholar 

  32. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Baxter PhD, FIBiol, FESC, FAHA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansen, D., Ytrehus, K. & Baxter, G.F. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia–reperfusion injury. Basic Res Cardiol 101, 53–60 (2006). https://doi.org/10.1007/s00395-005-0569-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0569-9

Key words

Navigation