Skip to main content

Advertisement

Log in

P450 induction alters paclitaxel pharmacokinetics and tissue distribution with multiple dosing

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Paclitaxel (Taxol) is an effective agent against a broad range of human cancers. Studies on the metabolism and disposition of paclitaxel have shown that it is primarily eliminated via hepatic metabolism by P450 enzymes (2C8 and 3A4) to essentially inactive metabolites, and that biliary and gut transport by P-glycoprotein (PGP) as well as urinary elimination of the parent compound play relatively minor roles. Recent studies in vitro have shown that paclitaxel treatment increases the level of CYP2C8 and CYP3A4 in human hepatocytes as well as PGP in colon tumor cells. The data suggest that previous paclitaxel exposure may influence metabolism and elimination of subsequent doses. Further, since weekly paclitaxel dose schedules are becoming more common as opposed to the original every 21-day dosing, the likelihood of enzyme induction from previous doses impacting that from subsequent doses is increased.

Methods

To study the potential for such sequence-dependent alterations in paclitaxel pharmacokinetics, we carried out pharmacokinetic studies in mouse plasma and tissues following day 1 and days 1 and 5 dosing at 20 mg/kg. Paclitaxel concentrations were determined by a sensitive LC/MS/MS assay out to 16 h post-dosing in plasma, liver, kidney, gut and heart. The effect of paclitaxel treatment on hepatic expression of PGP and P450 isoforms (CYP2C and CYP3A) was determined to elucidate the mechanism by which paclitaxel disposition is altered by previous drug exposure.

Results

Pharmacokinetic analysis of the data showed that plasma and tissue AUC values after treatment on day 5 following a dose on day 1 were between 50% and 74% of those determined following a single dose on day 1. The terminal elimination half-life was not different. Activity and protein levels for CYP2C in liver were elevated at 24 and 96 h after paclitaxel dosing. Cremophor EL, a carrier solvent for paclitaxel, also caused elevated CYP2C activity. Neither CYP3A nor PGP levels in liver were altered by paclitaxel or Cremophor EL treatment at the 24-h and 96-h time points. The levels of 6α-OH-paclitaxel in feces were increased on day 5 as opposed to day 1 while paclitaxel levels in feces were unchanged.

Conclusions

The results of our studies showed that paclitaxel pharmacokinetics are altered by previous paclitaxel exposure up to 96 h earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson CG, Wang J, Kumar GN, McMillan JM, Walle UK, Walle T (1995) Dexamethasone induction of taxol metabolism in the rat. Drug Metab Dispos 23:1286

    CAS  PubMed  Google Scholar 

  2. Belotti D, Vergani V, Drudis T, Borsotti P, Pitelli MR, Viale G, Giavazzi R, Taraboletti G (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843

    CAS  PubMed  Google Scholar 

  3. Bowers VD, Locker S, Ames S, Jennings W, Corry RJ (1991) The hemodynamic effects of Cremophor-EL. Transplantation 51:847

    CAS  PubMed  Google Scholar 

  4. Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36:99

    CAS  PubMed  Google Scholar 

  5. Devault A, Gros P (1990) Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol 10:1652

    CAS  PubMed  Google Scholar 

  6. Eiseman JL, Eddington ND, Leslie J, MacAuley C, Sentz DL, Zuhowski M, Kujawa JM, Young D, Egorin MJ (1994) Plasma pharmacokinetics and tissue distribution of paclitaxel in CD2F1 mice. Cancer Chemother Pharmacol 34:465

    CAS  PubMed  Google Scholar 

  7. Fennelly D, Aghajanian C, Shapiro F, O’Flaherty C, McKenzie M, O’Connor C, Tong W, Norton L, Spriggs D (1997) Phase I and pharmacologic study of paclitaxel administered weekly in patients with relapsed ovarian cancer. J Clin Oncol 15:187

    CAS  PubMed  Google Scholar 

  8. Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK (1999) Taxane induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical complications. Cancer Res 59:3776

    CAS  PubMed  Google Scholar 

  9. Harris JW, Rahman A, Kim BR, Guengerich FP, Collins JM (1994) Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 54:4026

    CAS  PubMed  Google Scholar 

  10. Henningsson A, Karlsson MO, Vigano L, Gianni L, Verweij J, Sparreboom A (2001) Mechanism-based pharmacokinetic model for paclitaxel. J Clin Oncol 19:4065

    CAS  PubMed  Google Scholar 

  11. Hotchkiss KA, Ashton AW, Sparano J, Schwartz EL (2000) Inhibition of endothelial cell function by docetaxel (Taxotere). Proc Am Assoc Cancer Res 41:647

    Google Scholar 

  12. Huizing MT, Misser VH, Pieters RC, ten Bokkel Huinink WW, Veenhof CH, Vermorken JB, Pinedo HM, Beijnen JH (1995) Taxanes: a new class of antitumor agents. Cancer Invest 13:381

    CAS  PubMed  Google Scholar 

  13. Innocenti F, Danesi R, Di Paolo A, Agen C, Nardini D, Bocci G, Del Tacca M (1995) Plasma and tissue disposition of paclitaxel (taxol) after intraperitoneal administration in mice. Drug Metab Dispos 23:713

    CAS  PubMed  Google Scholar 

  14. Lau DH, Xue L, Young LJ, Burke PA, Cheung AT (1999) Paclitaxel (Taxol): an inhibitor of angiogenesis in a highly vascularized transgenic breast cancer. Cancer Biother Radiopharm 14:31

    CAS  PubMed  Google Scholar 

  15. Lopes NM, Adams EG, Pitts TW, Bhuyan BK (1993) Cell kill kinetics and cell cycle effects of taxol on human and hamster ovarian cell lines. Cancer Chemother Pharmacol 32:235

    CAS  PubMed  Google Scholar 

  16. Miller KD, Sweeney CJ, Sledge GW Jr (2001) Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19:1195

    CAS  PubMed  Google Scholar 

  17. Monsarrat B, Chatelut E, Royer I, Alvinerie P, Dubois J, Dezeuse A, Roche H, Cros S, Wright M, Canal P (1998) Modification of paclitaxel metabolism in a cancer patient by induction of P450 3A4. Drug Metab Dispos 26:229

    CAS  PubMed  Google Scholar 

  18. Nallani SC, Goodwin B, Maglich JM, Buckley DJ, Buckley AR, Desai PB (2003) Induction of cytochrome P450 3A by paclitaxel in mice: pivotal role of the nuclear xenobiotic receptor, pregnane x receptor. Drug Metab Dispos 31:681

    CAS  PubMed  Google Scholar 

  19. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416

    CAS  PubMed  Google Scholar 

  20. Rahman A, Korzekwa KR, Grogan G, Gonzalez FJ, Harris JW (1994) Selective biotransportation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 54:5543

    CAS  PubMed  Google Scholar 

  21. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtube assembly in vitro by taxol. Nature 277:665

    CAS  PubMed  Google Scholar 

  22. Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smit JJM, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zilmans JMJM, Fibbe WE, Borst P (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A 94:4028

    CAS  PubMed  Google Scholar 

  23. Schuurhuis GJ, Broxterman HJ, Pinedo HM, van Heijningen TH, van Kalken CK, Vermorken JB, Spoelstra EC, Lankelma J (1990) The polyoxyethylene castor oil Cremophor EL modifies multidrug resistance. Br J Cancer 62:591

    CAS  PubMed  Google Scholar 

  24. Sonnichsen DS, Liu Q, Schuetz EG, Schuetz JD, Pappo A, Relling MV (1995) Variability in human cytochrome P450 paclitaxel metabolism. J Pharmacol Exp Ther 275:566

    CAS  PubMed  Google Scholar 

  25. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH, Tellingen O (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 94:2031

    CAS  PubMed  Google Scholar 

  26. Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH (1996) Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 56:2112

    CAS  PubMed  Google Scholar 

  27. Sparreboom A, van Zuylen L, Brouwer E, Loos WJ, de Bruijn P, Gelderblom H, Pillay M, Nooter K, Stoter G, Verweij J (1999) Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59:1454

    CAS  PubMed  Google Scholar 

  28. Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heilman DK, Shen J, Sledge GW Jr (2001) The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 61:3369

    CAS  PubMed  Google Scholar 

  29. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7:584

    CAS  PubMed  Google Scholar 

  30. van Asperen J, van Tellingen O, Sparreboom A, Schinkel AH, Borst P, Nooijen WJ, Beijnen JH (1997) Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 76:1181

    PubMed  Google Scholar 

  31. van Tellingen O, Huizing MT, Nannan Panday VR, Schellens JHM, Nooijen WJ, Beijnen JH (1999) Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients. Br J Cancer 81:330

    PubMed  Google Scholar 

  32. Walle T, Walle UK, Kumar GN, Bhalla KN (1995) Taxol metabolism and disposition in cancer patients. Drug Metab Dispos 23:506

    CAS  PubMed  Google Scholar 

  33. Werringloer J (1978) Assay of formaldehyde generated during microsomal oxidation reactions. Methods Enzymol 52:297

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CA75955 from the NCI to D.L.G. and by the University of Colorado Cancer Center Core grant (principal investigator: Dr. Paul A. Bunn, Jr.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Gustafson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, D.L., Long, M.E., Bradshaw, E.L. et al. P450 induction alters paclitaxel pharmacokinetics and tissue distribution with multiple dosing. Cancer Chemother Pharmacol 56, 248–254 (2005). https://doi.org/10.1007/s00280-004-0988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0988-6

Keywords

Navigation