FD-OCT and IVUS for detection of incomplete stent apposition in heavily calcified vessels: novel insights

David M Leistner, Ulf Landmesser, Georg M Fröhlich

In the present issue of Open Heart, Gudmundsdottir and colleagues compare two intracoronary imaging modalities, intravascular ultrasound (IVUS) and FD-optical coherence tomography (FD-OCT), in patients undergoing complex percutaneous coronary intervention (PCI) with rotablation for calcific coronary lesions. In particular, this study sought to detect incomplete stent apposition (ISA) using these different imaging modalities. ISA may play a role in the risk of target vessel failure, for example, stent thrombosis.

Intracoronary imaging has become widely available with the advent of IVUS in the early 1990s. IVUS-derived images with an axial resolution down to 150 µm have given novel insights into the clinical evolution of coronary artery disease and plaque composition. This technology was rapidly embraced by the interventional cardiology community, mainly to assess coronary lesions of intermediate significance in larger coronary arteries, to size the stent diameter or to monitor optimal stent deployment and exclude coronary dissections post-stenting. While this new intracoronary imaging fuelled enthusiasm, to date, limited data exist to demonstrate that IVUS-guided PCI translates into a superior clinical outcome with respect to incomplete stent apposition (ISA) using these different imaging modalities. ISA may play a role in the risk of target vessel failure, for example, stent thrombosis.

IVA articulated with angiography-guided PCI translates into a superior clinical outcome with respect to incomplete stent apposition (ISA) using these different modalities. ISA may play a role in the risk of target vessel failure, for example, stent thrombosis.

In the present issue of Open Heart, Gudmundsdottir and colleagues compare two intracoronary imaging modalities, intravascular ultrasound (IVUS) and FD-optical coherence tomography (FD-OCT), in patients undergoing complex percutaneous coronary intervention (PCI) with rotablation for calcific coronary lesions. In particular, this study sought to detect incomplete stent apposition (ISA) using these different imaging modalities. ISA may play a role in the risk of target vessel failure, for example, stent thrombosis.

Intracoronary imaging has become widely available with the advent of IVUS in the early 1990s. IVUS-derived images with an axial resolution down to 150 µm have given novel insights into the clinical evolution of coronary artery disease and plaque composition. This technology was rapidly embraced by the interventional cardiology community, mainly to assess coronary lesions of intermediate significance in larger coronary arteries, to size the stent diameter or to monitor optimal stent deployment and exclude coronary dissections post-stenting. While this new intracoronary imaging fuelled enthusiasm, to date, limited data exist to demonstrate that IVUS-guided PCI translates into a superior clinical outcome with respect to incomplete stent apposition (ISA) using these different imaging modalities. ISA may play a role in the risk of target vessel failure, for example, stent thrombosis.

In the present study, the authors compared IVUS and FD-OCT for the detection of incomplete stent apposition. They found that FD-OCT provided higher resolution images compared to IVUS, which allowed for better visualization of the stent strut apposition. The study results showed that FD-OCT could accurately identify ISA, which may be associated with an increased risk of target vessel failure.

IVUS has been widely used in clinical practice for the assessment of coronary lesions. However, its resolution is limited, and it may be unable to detect ISA accurately. In contrast, FD-OCT provides higher resolution images due to its superior axial resolution, allowing for better visualization of the stent strut apposition. This study found that FD-OCT could accurately identify ISA, which may be associated with an increased risk of target vessel failure.

In conclusion, the authors recommend the use of FD-OCT for the detection of incomplete stent apposition in heavily calcified vessels, as it provides higher resolution images compared to IVUS, allowing for better visualization of the stent strut apposition. This may improve the clinical outcomes of PCI procedures involving the left main stem.
vessel wall. ISA is defined as the lack of contact of stent struts with the vessel wall.3 This phenomenon may occur \textit{acutely}; (1) due to underexpansion of the stent with insufficient inflation pressure; (2) following poor or \textit{late} selection of stent size during follow-up; (3) which may then be due to thrombus resolution after Primary PCI or (4) because of insufficient radial force of the stent and consecutive recoil.5 The clinical relevance of improved detection of malapposed stent struts still needs to be better understood. Only several small studies investigated this subject with FD-OCT so far (table 1). However, two IVUS studies investigating first generation drug eluting stents found an association between ISA with very late stent thrombosis and myocardial infarction.10,11 This may be explained by the lower resolution of IVUS, where only significant levels of ISA may be detected, but not necessarily single stent strut malapposition, which is not relevant. One small study revealed ISA in 74\% of patients presenting with late stent thrombosis.12 However, the majority of cases were declared as \textit{late-acquired} ISA, so this likely could not be prevented by stent optimisation at baseline. Moreover, in-stent restenosis has been linked to ISA but existing data are rather limited.13

In the present manuscript, however, the clinical relevance of ISA was not the main focus.1 Of note, FD-OCT use in these highly calcified vessels allowed for improved detection of ISA as compared to IVUS.1 This finding is in line with previous studies and explained by the higher resolution of FD-OCT. Moreover, FD-OCT imaging triggered more intense postdilation, which reduced the extent of ISA from 34\% of stent surface area to 19\%,1 in this patient group with rotablation, and heavy calcification where ISA is expected, postdilation with a non-compliant balloon, may actually be considered standard procedure. If FD-OCT should be repeated after postdilation and if further more intense postdilation might yield superior outcomes was not examined in the present study.

In essence, the authors present an interesting study suggesting that FD-OCT provides more detailed information as compared to IVUS and may be a valuable imaging modality in the setting of heavily calcified coronary lesions. However, all of the aforementioned potential downsides need to be carefully considered, and more data are needed to determine the clinical role of FD-OCT in detection of ISA and the impact of different degrees of ISA on clinical outcome.

\begin{table}[t]
\centering
\caption{Association of IVUS-guided or OCT-guided PCI with outcome parameters}
\begin{tabular}{llccc}
\hline
Author (ref) & n & Type of stent & Assessment of ISA by & Follow-up (months) & Association of ISA and cardiovascular events \\
\hline
Cook \textit{et al}10 & 188 & SES/PES & IVUS & 8 & YES (ISA highly prevalent in patients with very late stent thrombosis) \\
Cook \textit{et al}11 & 194 & SES/PES & IVUS & 8 & YES (presence of ISA after DES associated with higher risk AMI and very late stent thrombosis) \\
Wiznenbichler \textit{et al}4 & 8583 & DES & IVUS & 12 & YES (less ST, MI and MACE) \\
Tanabe \textit{et al}14 & 469 & PES/BMS & IVUS & 6 & NO \\
Steinberg \textit{et al}15 & 1580 & PES/BMS & IVUS & 9 & NO \\
Hong \textit{et al}16 & 557 & SES/PES & IVUS & 6 & NO \\
Guagliumi \textit{et al}17 & 21 & ZES & OCT & 6 & NO \\
Kubo \textit{et al}18 & 45 & SES & OCT & 9 & NO \\
Guagliumi \textit{et al}19 & 77 & SES/PES/ZES/BMS & OCT & 6 & NO \\
Guagliumi \textit{et al}17 & 42 & EES & OCT & 6 & NO \\
\hline
\end{tabular}
\end{table}

BMS, bare-metal stent; DES, drug-eluting stent; EES, everolimus-eluting stent; ISA, incomplete stent apposition; IVUS, intravascular ultrasound; MI, myocardial infarction; OCT, optical coherence tomography; PES, pacitaxel-eluting stent; SES, sirolimus-eluting stent; ST, stent thrombosis; ZES, zotarolimus-eluting stent.

\textbf{REFERENCES}

1. I G. Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcific coronary artery disease. \textit{Open Heart} 2015.67

FD-OCT and IVUS for detection of incomplete stent apposition in heavily calcified vessels: novel insights
David M Leistner, Ulf Landmesser and Georg M Fröhlich

Open Heart 2015 2:
doi: 10.1136/openhrt-2015-000292

Updated information and services can be found at:
http://openheart.bmj.com/content/2/1/e000292

These include:

References
This article cites 18 articles, 10 of which you can access for free at:
http://openheart.bmj.com/content/2/1/e000292#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/