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ABSTRACT
The α-glucosidase inhibitor acarbose, which slows
carbohydrate digestion and blunts postprandial rises in
plasma glucose, has long been used to treat patients
with type 2 diabetes or glucose intolerance. Like
metformin, acarbose tends to aid weight control,
postpone onset of diabetes and decrease risk for
cardiovascular events. Acarbose treatment can
favourably affect blood pressure, serum lipids, platelet
aggregation, progression of carotid intima-media
thickness and postprandial endothelial dysfunction. In
mice, lifetime acarbose feeding can increase median
and maximal lifespan—an effect associated with
increased plasma levels of fibroblast growth factor 21
(FGF21) and decreased levels of insulin-like growth
factor-I (IGF-I). There is growing reason to suspect that
an upregulation of fasting and postprandial production
of glucagon-like peptide-1 (GLP-1)—stemming from
increased delivery of carbohydrate to L cells in the
distal intestinal tract—is largely responsible for the
versatile health protection conferred by acarbose.
Indeed, GLP-1 exerts protective effects on vascular
endothelium, the liver, the heart, pancreatic β cells, and
the brain which can rationalise many of the benefits
reported with acarbose. And GLP-1 may act on the
liver to modulate its production of FGF21 and IGF-I,
thereby promoting longevity. The benefits of acarbose
are likely mimicked by diets featuring slowly-digested
‘lente’ carbohydrate, and by certain nutraceuticals
which can slow carbohydrate absorption. Prebiotics
that promote colonic generation of short-chain fatty
acids represent an alternative strategy for boosting
intestinal GLP-1 production. The health benefits of all
these measures presumably would be potentiated by
concurrent use of dipeptidyl peptidase 4 inhibitors,
which slow the proteolysis of GLP-1 in the blood.

ACARBOSE THERAPY PROMOTES VASCULAR
HEALTH
Acarbose is an α-glucosidase inhibitor pre-
scribed for prevention and treatment of dia-
betes; it and metformin are the most
commonly used diabetes drugs worldwide.
Less than 2% of acarbose is absorbed after

administration, rationalising its non-toxicity;
its clinical utility evidently reflects its ability
to slow absorption of dietary carbohydrate by
acting within the intestinal tract to inhibit
brush-border α-glucosidase, which plays a key
role in the digestion of starch and sugars.1 2

Inhibition of α-glucosidase in saliva, and
non-competitive inhibition of pancreatic
α-amylase, also contribute to it slowing of
carbohydrate absorption.3 Clinical doses of
acarbose ingested with meals notably blunt
the postprandial increase in serum glucose, a
well-documented predictor of macrovascular
and microvascular complications in diabetics,
and of macrovascular risk in non-diabetics.4 5

A Cochrane meta-analysis found that, on
average, acarbose therapy lowers glycated
haemoglobin (HbA1c) levels by 0.8%, and
reduces the postprandial increase in plasma
glucose by 2.3 mM.6 Glycaemic control bene-
fits of acarbose therapy tend to be greater in
Asian clinical trials than in Western ones,
likely because Asians tend to consume diets
higher in carbohydrates.7 Gastrointestinal
side effects of acarbose—reflecting carbohy-
drate malabsorption—are fairly common
when initiating therapy, but tend to lessen
over time as the distal intestine upregulates
its capacity to absorb glucose. These side
effects can be minimised by starting with a
low dose—25 or 50 mg with two or three
meals daily—and gradually raising it; in
other words, ‘start low, go slow’.8 The
maximal dose of acarbose is 100 mg three
time a day—higher doses do not achieve a
greater impact on carbohydrate digestion.
Like metformin, but unlike many other dia-

betes drugs, acarbose tends to promote weight
loss, and cannot trigger hypoglycaemic epi-
sodes.9–11 Acarbose also resembles metformin
in that there is reasonably compelling evi-
dence that acarbose therapy in patients with
diabetes or glucose intolerance has a
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favourable impact on cardiovascular health outcomes, and
can slow the onset of diabetes in glucose-intolerant partici-
pants.2 12 13 Analyses of long-term outcomes in the Stop
Non-insulin-dependent Diabetes Mellitus (STOP-NIDDM)
trial, as well as a meta-analysis of longer-term controlled
trials of acarbose in type 2 diabetics, conclude that risk for
cardiovascular events, most notably myocardial infarction,
is lower in acarbose-treated patients (HR=0.51; 95% CI
0.28 to 0.95 in STOP-NIDDM and HR=0.66; CI 0.48 to
0.88 in the diabetes treatment meta-analysis).14 15 A large
multicenter controlled trial in China ongoing since 2009,
the Acarbose Cardiovascular Evaluation study, should
provide a more definitive determination of acarbose’s cap-
acity to promote vascular health.16

Acarbose therapy can favourably influence cardiovascu-
lar risk factors. In diabetics, acarbose therapy tends to
lower mean blood pressure; in the STOP-NIDDM trial,
incidence of newly diagnosed hypertension was 34% lower
in the acarbose-treated group.14 17 Yet acarbose therapy
also helps to prevent postprandial hypotension in elderly
participants prone to this disorder.18 19 Serum triglyceride
levels tend to drop, and high-density lipoprotein choles-
terol to rise, during acarbose therapy.13 14 In early type 2
diabetes, acarbose therapy decreases urinary markers of
platelet aggregation.20 Slowed progression of carotid
intima-media thickness has also been reported in acarbose-
treated patients, and acarbose therapy improves postpran-
dial endothelium-dependent vasodilation.21–24 In rabbits
subjected to 30 min of coronary occlusion followed by
reperfusion, feeding acarbose for a week prior to the pro-
cedure was associated with a greater than 50% reduction
in infarct size; this benefit was wholly abolished if an inhibi-
tor of ATP-sensitive K channels (5-hydroxydecanoate) was
administered slightly before onset of ischaemia.25

ACARBOSE EXTENDS LONGEVITY AND MODULATES FGF21
AND INSULIN-LIKE GROWTH FACTOR-I (IGF-I) IN MICE
There is now reason to suspect that, beyond its clear
utility in those who are glucose intolerant, acarbose may
have broader potential for health promotion. In a life-
time feeding study in mice, addition of 0.1% acarbose to
a standard diet (65% of calories from grain carbohy-
drates, 22% protein), beginning at 4 months of age, was
associated with significant increases in the median and
maximal lifespan, in males and females.26 The increase
in median lifespan was greater in males than females—
22% vs 5%; maximal lifespan increased 11% and 9% in
males and females, respectively. Curiously, acarbose
feeding did not influence the HbA1c level in these
mice, likely because their fasting glucoses were slightly
higher, balancing out the likely impact of acarbose on
postprandial glucose. Since these mice were not diabetic
or diabetes prone, it is not immediately apparent why
slowing dietary glucose absorption would have such a
notable impact on longevity in mice.
However, the researchers uncovered two key clues—

serum FGF21 was significantly higher, and serum insulin-

like growth factor-I (IGF-I) significantly lower in the
acarbose-treated mice.26 Systemic IGF-I activity is a clear
driver of the aging process and determinant of longevity
in mice;27 moreover, FGF21 acts on the liver to blunt
hepatic sensitivity to growth hormone, thereby decreas-
ing the liver’s production of IGF-I.28–30 Transgenic mice
with a constitutive increase in FGF21 production enjoy a
substantial increase in mean and maximal lifespan, an
effect likely mediated in part by downregulation of IGF-I
activity.31 32

An effect of acarbose on hepatic FGF21 production
has not previously been reported. However, by diverting
additional glucose to the distal intestine, chronic
therapy with acarbose or other α-glucosidase inhibitors
boosts the production of glucagon-like peptide-1
(GLP-1) by intestinal L cells.33–38 There are several
reports that long-acting agonists for the GLP-1 receptor
increase hepatic FGF21 production.39 40 PPARα, after
deacetylation by Sirt1, interacts with the FGF21 pro-
moter to stimulate transcription of this hormone.41–45

Notably, GLP-1 agonist drugs are reported to increase
expression of PPARα and Sirt1 in hepatocytes.46–48

Hence, these findings suggest that the upregulation of
GLP-1 consequent to chronic acarbose treatment may
act on the liver to promote transcriptional activation of
FGF21, which in turn suppresses IGF-I production.

ACARBOSE BENEFITS REFLECT SUPPRESSION OF
POSTPRANDIAL GLYCAEMIA AND UPREGULATION OF
GLP-1
In light of current evidence, two phenomena appear to
interact in mediating acarbose’s favourable health
impacts—a suppression of postprandial surges in plasma
glucose, and an increased production of GLP-1. A rapid
elevation of plasma glucose levels imposes an oxidative
stress on vascular endothelium that compromises the
protective function of endothelial nitric oxide synthase
(eNOS) and promotes inflammation; this effect is asso-
ciated with an acute reduction in endothelium-
dependent vasodilation.49 This oxidative stress can ori-
ginate from NADPH oxidase, uncoupled eNOS, and
mitochondria.50–52 Curiously, episodic large rises in
glucose appear to have a more notable impact in this
regard than sustained elevations of glucose; hence,
blunting the postprandial glucose rise may be particu-
larly worthwhile as a strategy for protecting the vascula-
ture from oxidative stress.49 53 54 Moreover, since
acarbose therapy does not risk provoking hypoglycaemic
reactions, it might be viewed as a strategy for stabilising
glucose levels in diabetics, avoiding the wild swings in
glycaemia that may be particularly noxious for vascular
health. As noted, postprandial glucose predicts risk for
microvascular and macrovascular complications in type 2
diabetics more effectively than fasting glucose; it also
predicts vascular risk in glucose-intolerant non-
diabetics.4 5 While some of this risk likely is attributable
to metabolic factors that induce this glucose intolerance,
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there is also good reason to suspect that the
pro-oxidative impact of postprandial hyperglycaemia per
se is a key mediator of this risk. Moreover, episodic
hyperglycaemia, in conjunction with elevated free fatty
acids, also exerts an oxidant effect on pancreatic β cells;
in pre-diabetics, this ‘glucolipotoxicity’ can lead to the
failure of glucose-stimulated insulin secretion and β-cell
apoptosis that ushers in clinical diabetes.55 Hence, mod-
eration of postprandial hyperglycaemia may be largely
responsible for acarbose’s ability to slow diabetes onset.
However, the ability of acarbose treatment to

up-regulate GLP-1 production may also be a key medi-
ator of its health benefits. A recent 24-week study in type
2 diabetics found that fasting and postprandial plasma
concentrations of GLP-1 were about 10% and 20%
higher, respectively, during acarbose therapy.38 GLP-1
acts directly on vascular endothelium to boost eNOS
activity;56–58 in the 24-week study, changes in GLP-1
levels correlated directly with increases in serum nitric
oxide.38 Activation of AMPK also contributes to GLP-1’s
favourable influence on endothelial function.59 GLP-1
acts directly on the liver to promote fatty acid oxidation
and inhibit fatty acid synthesis;47 60 GLP-1 receptor
agonists have a favourable impact on models of non-
alcoholic fatty liver disease in rodents, and also have a
favourable effect on this syndrome in humans.46 61–64

The clinical impact of acarbose on non-alcoholic fatty
liver disease still requires evaluation.65 As we have seen,
the effects of acarbose treatment on hepatic production
of FGF21 and IGF-I in healthy mice might well be attrib-
utable to increased GLP-1 production.
The tendency of acarbose to promote weight loss is

shared by long-lasting GLP-1 receptor mimics currently
used in diabetes therapy; indeed, these agents can aid
weight loss in non-diabetics as well.66 67 Hence, it is rea-
sonable to suspect that GLP-1 is a mediator of the favour-
able impact of acarbose therapy on weight control.
Studies with long-lived GLP-1 agonists in rodents dem-

onstrate that pretreatment with these agents ameliorate
the impact of ischaemia reperfusion on the heart.68–72

This protective effect is blocked by concurrent adminis-
tration of inhibitors of mitochondrial ATP-sensitive K
channels (mKATP).

72 Ischaemic preconditioning likewise
protects the heart from ischaemia-reperfusion by
up-regulating activity of mKATP channels.73 The opening
of these channels during ischaemia lessens the potential
gradient driving calcium influx into mitochondria, pre-
venting an excessive rise in intramitochondrial calcium

that severely compromises mitochondrial function.39 47

The fact that acarbose pretreatment of normal healthy
rabbits markedly decreases infarct size following myocar-
dial ischaemia reperfusion—a benefit blocked by acute
administration of an mKATP inhibitor—suggests that, by
raising GLP-1 production, acarbose exerts a protective
effect on the heart mechanistically analogous to ischae-
mic preconditioning.25

In addition to acting directly on pancreatic β cells to
potentiate glucose-stimulated insulin release, GLP-1 also
acts on these cells in various ways to counteract glucoli-
potoxicity.74–78 Hence, increased GLP-1 production may
collaborate with a decrease in postprandial glucose to
mediate acarbose’s diabetes preventive action.
Brain neurons express GLP-1 receptors, and rodent

studies with long-lived GLP-1 receptor agonists indicated
that these agents can protect neurons from ischaemic
damage, support effective learning, and diminish
memory impairment in mouse models of Alzheimer’s
disease.79–86 Since these agents are effective in these
regards when administered intraperitoneally, it is con-
ceivable that chronic upregulation of intestinal GLP-1
production could modestly benefit brain health.
In summary, GLP-1 acts directly on the vasculature,

liver, myocardium, β cells, and brain to safeguard the
structural and functional integrity of these organs—
while aiding weight control and modulating FGF21 and
IGF-I in a way likely to slow aging and promote longevity;
these interactions are summarised in figure 1. Acarbose
therapy, or other measures which safely up-regulate
intestinal GLP-1 production, may provide protection in
these respects. And there is no reason to believe that
such benefits will only be achievable in the context of
glucose intolerance; upregulation of GLP-1 production
might be viewed as an ‘anti-aging’ strategy of benefit to
the general population. Of course, acarbose is likely to
provide greater net protection in glucose-intolerant par-
ticipants, owing to its favourable influence on their
excessive postprandial glucose excursions.

ALTERNATIVE OR COMPLEMENTARY STRATEGIES FOR
ACHIEVING ANALOGOUS HEALTH BENEFITS
Since acarbose, for practical purposes, is not absorbed,
and its physiological effects hence reflect a slowing of
dietary carbohydrate digestion, it is reasonable to
suspect that choosing a diet in which slow-digesting
‘lente’ carbohydrate predominates should achieve

Figure 1 Potential health

benefits of lente carbohydrate/

acarbose. GLP, glucagon-like

peptide-1; FGF21, fibroblast

growth factor 21; IGF-I,

insulin-like growth factor-I; eNOS,

endothelial nitric oxide synthase;

FFA, free fatty acids; SCFA,

short-chain fatty acids.
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benefits comparable to those of acarbose therapy.87 88

Pasta, boiled beans, structurally intact grain kernels and
sprouted grains—as contrasted to most flour or sugar
products—are more difficult to digest and have a
notably lower glycaemic index.89 Arguably, complement-
ing such dietary choices with a low dose of acarbose
(perhaps 25 mg per meal?) would be an appropriate
strategy for minimising postprandial glycaemic excursion
while boosting GLP-1 production.
Nutraceutical measures for delaying digestion of

dietary carbohydrate, including administration of
adequate doses of the highly viscous soluble fibre gluco-
mannan, or of amylase-inhibitory phytochemicals
extracted from beans, might be expected to mimic the
health benefits achievable by acarbose or other pharma-
ceutical α-glucosidase inhibitors (eg, miglitol, vogli-
bose).90–98 Glucomannan has the potential drawback of
impeding the absorption of certain coadministered
drugs or fat-soluble vitamins; hence, its use may be
incompatible with some drugs that must be administered
with meals.99 100 Prebiotics can promote colonic produc-
tion of GLP-1, as the short-chain fatty acids produced by
properly nourished gut bacteria act on L cells to stimu-
late release of GLP-1.101–106 Hence, prebiotics such as
inulin or resistant starch may mimic the GLP-1-mediated
benefits of acarbose, though they could not be expected
to notably influence postprandial glucose levels.
Consideration should also be given to the possibility that
dietary glycine might act on L cells to stimulate GLP-1
release; high physiological concentrations of glycine, via
activation of glycine-gated chloride channels, have this
effect on an L-cell-derived cell line.107 Such an effect
might explain the ability of glycine supplementation to
prevent metabolic syndrome and fatty liver in
sucrose-fed rats.108–110

The up-regulatory impact of any of these measures on
GLP-1 levels should be considerably potentiated by con-
current administration of dipeptidyl peptidase 4 (DPP4)
inhibitors—for example, sitagliptin, vildagliptin—which
slow the proteolytic degradation of GLP-1 in plasma.111

In overview, it appears that achieving slow digestion of
dietary carbohydrate—either by choosing ‘lente’ carbo-
hydrate foods, or by pharmacological inhibition of
carbohydrate digestion, as with acarbose—can exert a
range of favourable effects on health and longevity by
up-regulating GLP-1 production and concurrently blunt-
ing the pro-oxidative effect of postprandial glucose ele-
vations. Prebiotics can also be employed to boost GLP-1
production, and concurrent treatment with DPP4 inhibi-
tors should potentiate the impact of these strategies on
GLP-1 levels. These strategies may have potential for
optimising healthspan not just in diabetics and pre-
diabetics, but in the general population.
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